1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AttributeSelectedClassifier.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.attributeSelection.ASEvaluation; |
---|
26 | import weka.attributeSelection.ASSearch; |
---|
27 | import weka.attributeSelection.AttributeSelection; |
---|
28 | import weka.classifiers.SingleClassifierEnhancer; |
---|
29 | import weka.core.AdditionalMeasureProducer; |
---|
30 | import weka.core.Capabilities; |
---|
31 | import weka.core.Drawable; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionUtils; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.WeightedInstancesHandler; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Random; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * Dimensionality of training and test data is reduced by attribute selection before being passed on to a classifier. |
---|
48 | * <p/> |
---|
49 | <!-- globalinfo-end --> |
---|
50 | * |
---|
51 | <!-- options-start --> |
---|
52 | * Valid options are: <p/> |
---|
53 | * |
---|
54 | * <pre> -E <attribute evaluator specification> |
---|
55 | * Full class name of attribute evaluator, followed |
---|
56 | * by its options. |
---|
57 | * eg: "weka.attributeSelection.CfsSubsetEval -L" |
---|
58 | * (default weka.attributeSelection.CfsSubsetEval)</pre> |
---|
59 | * |
---|
60 | * <pre> -S <search method specification> |
---|
61 | * Full class name of search method, followed |
---|
62 | * by its options. |
---|
63 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
64 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
65 | * |
---|
66 | * <pre> -D |
---|
67 | * If set, classifier is run in debug mode and |
---|
68 | * may output additional info to the console</pre> |
---|
69 | * |
---|
70 | * <pre> -W |
---|
71 | * Full name of base classifier. |
---|
72 | * (default: weka.classifiers.trees.J48)</pre> |
---|
73 | * |
---|
74 | * <pre> |
---|
75 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
76 | * </pre> |
---|
77 | * |
---|
78 | * <pre> -U |
---|
79 | * Use unpruned tree.</pre> |
---|
80 | * |
---|
81 | * <pre> -C <pruning confidence> |
---|
82 | * Set confidence threshold for pruning. |
---|
83 | * (default 0.25)</pre> |
---|
84 | * |
---|
85 | * <pre> -M <minimum number of instances> |
---|
86 | * Set minimum number of instances per leaf. |
---|
87 | * (default 2)</pre> |
---|
88 | * |
---|
89 | * <pre> -R |
---|
90 | * Use reduced error pruning.</pre> |
---|
91 | * |
---|
92 | * <pre> -N <number of folds> |
---|
93 | * Set number of folds for reduced error |
---|
94 | * pruning. One fold is used as pruning set. |
---|
95 | * (default 3)</pre> |
---|
96 | * |
---|
97 | * <pre> -B |
---|
98 | * Use binary splits only.</pre> |
---|
99 | * |
---|
100 | * <pre> -S |
---|
101 | * Don't perform subtree raising.</pre> |
---|
102 | * |
---|
103 | * <pre> -L |
---|
104 | * Do not clean up after the tree has been built.</pre> |
---|
105 | * |
---|
106 | * <pre> -A |
---|
107 | * Laplace smoothing for predicted probabilities.</pre> |
---|
108 | * |
---|
109 | * <pre> -Q <seed> |
---|
110 | * Seed for random data shuffling (default 1).</pre> |
---|
111 | * |
---|
112 | <!-- options-end --> |
---|
113 | * |
---|
114 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
115 | * @version $Revision: 1.26 $ |
---|
116 | */ |
---|
117 | public class AttributeSelectedClassifier |
---|
118 | extends SingleClassifierEnhancer |
---|
119 | implements OptionHandler, Drawable, AdditionalMeasureProducer, |
---|
120 | WeightedInstancesHandler { |
---|
121 | |
---|
122 | /** for serialization */ |
---|
123 | static final long serialVersionUID = -5951805453487947577L; |
---|
124 | |
---|
125 | /** The attribute selection object */ |
---|
126 | protected AttributeSelection m_AttributeSelection = null; |
---|
127 | |
---|
128 | /** The attribute evaluator to use */ |
---|
129 | protected ASEvaluation m_Evaluator = |
---|
130 | new weka.attributeSelection.CfsSubsetEval(); |
---|
131 | |
---|
132 | /** The search method to use */ |
---|
133 | protected ASSearch m_Search = new weka.attributeSelection.BestFirst(); |
---|
134 | |
---|
135 | /** The header of the dimensionally reduced data */ |
---|
136 | protected Instances m_ReducedHeader; |
---|
137 | |
---|
138 | /** The number of class vals in the training data (1 if class is numeric) */ |
---|
139 | protected int m_numClasses; |
---|
140 | |
---|
141 | /** The number of attributes selected by the attribute selection phase */ |
---|
142 | protected double m_numAttributesSelected; |
---|
143 | |
---|
144 | /** The time taken to select attributes in milliseconds */ |
---|
145 | protected double m_selectionTime; |
---|
146 | |
---|
147 | /** The time taken to select attributes AND build the classifier */ |
---|
148 | protected double m_totalTime; |
---|
149 | |
---|
150 | |
---|
151 | /** |
---|
152 | * String describing default classifier. |
---|
153 | * |
---|
154 | * @return the default classifier classname |
---|
155 | */ |
---|
156 | protected String defaultClassifierString() { |
---|
157 | |
---|
158 | return "weka.classifiers.trees.J48"; |
---|
159 | } |
---|
160 | |
---|
161 | /** |
---|
162 | * Default constructor. |
---|
163 | */ |
---|
164 | public AttributeSelectedClassifier() { |
---|
165 | m_Classifier = new weka.classifiers.trees.J48(); |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Returns a string describing this search method |
---|
170 | * @return a description of the search method suitable for |
---|
171 | * displaying in the explorer/experimenter gui |
---|
172 | */ |
---|
173 | public String globalInfo() { |
---|
174 | return "Dimensionality of training and test data is reduced by " |
---|
175 | +"attribute selection before being passed on to a classifier."; |
---|
176 | } |
---|
177 | |
---|
178 | /** |
---|
179 | * Returns an enumeration describing the available options. |
---|
180 | * |
---|
181 | * @return an enumeration of all the available options. |
---|
182 | */ |
---|
183 | public Enumeration listOptions() { |
---|
184 | Vector newVector = new Vector(3); |
---|
185 | |
---|
186 | newVector.addElement(new Option( |
---|
187 | "\tFull class name of attribute evaluator, followed\n" |
---|
188 | + "\tby its options.\n" |
---|
189 | + "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"\n" |
---|
190 | + "\t(default weka.attributeSelection.CfsSubsetEval)", |
---|
191 | "E", 1, "-E <attribute evaluator specification>")); |
---|
192 | |
---|
193 | newVector.addElement(new Option( |
---|
194 | "\tFull class name of search method, followed\n" |
---|
195 | + "\tby its options.\n" |
---|
196 | + "\teg: \"weka.attributeSelection.BestFirst -D 1\"\n" |
---|
197 | + "\t(default weka.attributeSelection.BestFirst)", |
---|
198 | "S", 1, "-S <search method specification>")); |
---|
199 | |
---|
200 | Enumeration enu = super.listOptions(); |
---|
201 | while (enu.hasMoreElements()) { |
---|
202 | newVector.addElement(enu.nextElement()); |
---|
203 | } |
---|
204 | return newVector.elements(); |
---|
205 | } |
---|
206 | |
---|
207 | /** |
---|
208 | * Parses a given list of options. <p/> |
---|
209 | * |
---|
210 | <!-- options-start --> |
---|
211 | * Valid options are: <p/> |
---|
212 | * |
---|
213 | * <pre> -E <attribute evaluator specification> |
---|
214 | * Full class name of attribute evaluator, followed |
---|
215 | * by its options. |
---|
216 | * eg: "weka.attributeSelection.CfsSubsetEval -L" |
---|
217 | * (default weka.attributeSelection.CfsSubsetEval)</pre> |
---|
218 | * |
---|
219 | * <pre> -S <search method specification> |
---|
220 | * Full class name of search method, followed |
---|
221 | * by its options. |
---|
222 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
223 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
224 | * |
---|
225 | * <pre> -D |
---|
226 | * If set, classifier is run in debug mode and |
---|
227 | * may output additional info to the console</pre> |
---|
228 | * |
---|
229 | * <pre> -W |
---|
230 | * Full name of base classifier. |
---|
231 | * (default: weka.classifiers.trees.J48)</pre> |
---|
232 | * |
---|
233 | * <pre> |
---|
234 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
235 | * </pre> |
---|
236 | * |
---|
237 | * <pre> -U |
---|
238 | * Use unpruned tree.</pre> |
---|
239 | * |
---|
240 | * <pre> -C <pruning confidence> |
---|
241 | * Set confidence threshold for pruning. |
---|
242 | * (default 0.25)</pre> |
---|
243 | * |
---|
244 | * <pre> -M <minimum number of instances> |
---|
245 | * Set minimum number of instances per leaf. |
---|
246 | * (default 2)</pre> |
---|
247 | * |
---|
248 | * <pre> -R |
---|
249 | * Use reduced error pruning.</pre> |
---|
250 | * |
---|
251 | * <pre> -N <number of folds> |
---|
252 | * Set number of folds for reduced error |
---|
253 | * pruning. One fold is used as pruning set. |
---|
254 | * (default 3)</pre> |
---|
255 | * |
---|
256 | * <pre> -B |
---|
257 | * Use binary splits only.</pre> |
---|
258 | * |
---|
259 | * <pre> -S |
---|
260 | * Don't perform subtree raising.</pre> |
---|
261 | * |
---|
262 | * <pre> -L |
---|
263 | * Do not clean up after the tree has been built.</pre> |
---|
264 | * |
---|
265 | * <pre> -A |
---|
266 | * Laplace smoothing for predicted probabilities.</pre> |
---|
267 | * |
---|
268 | * <pre> -Q <seed> |
---|
269 | * Seed for random data shuffling (default 1).</pre> |
---|
270 | * |
---|
271 | <!-- options-end --> |
---|
272 | * |
---|
273 | * @param options the list of options as an array of strings |
---|
274 | * @throws Exception if an option is not supported |
---|
275 | */ |
---|
276 | public void setOptions(String[] options) throws Exception { |
---|
277 | |
---|
278 | // same for attribute evaluator |
---|
279 | String evaluatorString = Utils.getOption('E', options); |
---|
280 | if (evaluatorString.length() == 0) |
---|
281 | evaluatorString = weka.attributeSelection.CfsSubsetEval.class.getName(); |
---|
282 | String [] evaluatorSpec = Utils.splitOptions(evaluatorString); |
---|
283 | if (evaluatorSpec.length == 0) { |
---|
284 | throw new Exception("Invalid attribute evaluator specification string"); |
---|
285 | } |
---|
286 | String evaluatorName = evaluatorSpec[0]; |
---|
287 | evaluatorSpec[0] = ""; |
---|
288 | setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec)); |
---|
289 | |
---|
290 | // same for search method |
---|
291 | String searchString = Utils.getOption('S', options); |
---|
292 | if (searchString.length() == 0) |
---|
293 | searchString = weka.attributeSelection.BestFirst.class.getName(); |
---|
294 | String [] searchSpec = Utils.splitOptions(searchString); |
---|
295 | if (searchSpec.length == 0) { |
---|
296 | throw new Exception("Invalid search specification string"); |
---|
297 | } |
---|
298 | String searchName = searchSpec[0]; |
---|
299 | searchSpec[0] = ""; |
---|
300 | setSearch(ASSearch.forName(searchName, searchSpec)); |
---|
301 | |
---|
302 | super.setOptions(options); |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Gets the current settings of the Classifier. |
---|
307 | * |
---|
308 | * @return an array of strings suitable for passing to setOptions |
---|
309 | */ |
---|
310 | public String [] getOptions() { |
---|
311 | |
---|
312 | String [] superOptions = super.getOptions(); |
---|
313 | String [] options = new String [superOptions.length + 4]; |
---|
314 | |
---|
315 | int current = 0; |
---|
316 | |
---|
317 | // same attribute evaluator |
---|
318 | options[current++] = "-E"; |
---|
319 | options[current++] = "" +getEvaluatorSpec(); |
---|
320 | |
---|
321 | // same for search |
---|
322 | options[current++] = "-S"; |
---|
323 | options[current++] = "" + getSearchSpec(); |
---|
324 | |
---|
325 | System.arraycopy(superOptions, 0, options, current, |
---|
326 | superOptions.length); |
---|
327 | |
---|
328 | return options; |
---|
329 | } |
---|
330 | |
---|
331 | /** |
---|
332 | * Returns the tip text for this property |
---|
333 | * @return tip text for this property suitable for |
---|
334 | * displaying in the explorer/experimenter gui |
---|
335 | */ |
---|
336 | public String evaluatorTipText() { |
---|
337 | return "Set the attribute evaluator to use. This evaluator is used " |
---|
338 | +"during the attribute selection phase before the classifier is " |
---|
339 | +"invoked."; |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Sets the attribute evaluator |
---|
344 | * |
---|
345 | * @param evaluator the evaluator with all options set. |
---|
346 | */ |
---|
347 | public void setEvaluator(ASEvaluation evaluator) { |
---|
348 | m_Evaluator = evaluator; |
---|
349 | } |
---|
350 | |
---|
351 | /** |
---|
352 | * Gets the attribute evaluator used |
---|
353 | * |
---|
354 | * @return the attribute evaluator |
---|
355 | */ |
---|
356 | public ASEvaluation getEvaluator() { |
---|
357 | return m_Evaluator; |
---|
358 | } |
---|
359 | |
---|
360 | /** |
---|
361 | * Gets the evaluator specification string, which contains the class name of |
---|
362 | * the attribute evaluator and any options to it |
---|
363 | * |
---|
364 | * @return the evaluator string. |
---|
365 | */ |
---|
366 | protected String getEvaluatorSpec() { |
---|
367 | |
---|
368 | ASEvaluation e = getEvaluator(); |
---|
369 | if (e instanceof OptionHandler) { |
---|
370 | return e.getClass().getName() + " " |
---|
371 | + Utils.joinOptions(((OptionHandler)e).getOptions()); |
---|
372 | } |
---|
373 | return e.getClass().getName(); |
---|
374 | } |
---|
375 | |
---|
376 | /** |
---|
377 | * Returns the tip text for this property |
---|
378 | * @return tip text for this property suitable for |
---|
379 | * displaying in the explorer/experimenter gui |
---|
380 | */ |
---|
381 | public String searchTipText() { |
---|
382 | return "Set the search method. This search method is used " |
---|
383 | +"during the attribute selection phase before the classifier is " |
---|
384 | +"invoked."; |
---|
385 | } |
---|
386 | |
---|
387 | /** |
---|
388 | * Sets the search method |
---|
389 | * |
---|
390 | * @param search the search method with all options set. |
---|
391 | */ |
---|
392 | public void setSearch(ASSearch search) { |
---|
393 | m_Search = search; |
---|
394 | } |
---|
395 | |
---|
396 | /** |
---|
397 | * Gets the search method used |
---|
398 | * |
---|
399 | * @return the search method |
---|
400 | */ |
---|
401 | public ASSearch getSearch() { |
---|
402 | return m_Search; |
---|
403 | } |
---|
404 | |
---|
405 | /** |
---|
406 | * Gets the search specification string, which contains the class name of |
---|
407 | * the search method and any options to it |
---|
408 | * |
---|
409 | * @return the search string. |
---|
410 | */ |
---|
411 | protected String getSearchSpec() { |
---|
412 | |
---|
413 | ASSearch s = getSearch(); |
---|
414 | if (s instanceof OptionHandler) { |
---|
415 | return s.getClass().getName() + " " |
---|
416 | + Utils.joinOptions(((OptionHandler)s).getOptions()); |
---|
417 | } |
---|
418 | return s.getClass().getName(); |
---|
419 | } |
---|
420 | |
---|
421 | /** |
---|
422 | * Returns default capabilities of the classifier. |
---|
423 | * |
---|
424 | * @return the capabilities of this classifier |
---|
425 | */ |
---|
426 | public Capabilities getCapabilities() { |
---|
427 | Capabilities result; |
---|
428 | |
---|
429 | if (getEvaluator() == null) |
---|
430 | result = super.getCapabilities(); |
---|
431 | else |
---|
432 | result = getEvaluator().getCapabilities(); |
---|
433 | |
---|
434 | // set dependencies |
---|
435 | for (Capability cap: Capability.values()) |
---|
436 | result.enableDependency(cap); |
---|
437 | |
---|
438 | return result; |
---|
439 | } |
---|
440 | |
---|
441 | /** |
---|
442 | * Build the classifier on the dimensionally reduced data. |
---|
443 | * |
---|
444 | * @param data the training data |
---|
445 | * @throws Exception if the classifier could not be built successfully |
---|
446 | */ |
---|
447 | public void buildClassifier(Instances data) throws Exception { |
---|
448 | if (m_Classifier == null) { |
---|
449 | throw new Exception("No base classifier has been set!"); |
---|
450 | } |
---|
451 | |
---|
452 | if (m_Evaluator == null) { |
---|
453 | throw new Exception("No attribute evaluator has been set!"); |
---|
454 | } |
---|
455 | |
---|
456 | if (m_Search == null) { |
---|
457 | throw new Exception("No search method has been set!"); |
---|
458 | } |
---|
459 | |
---|
460 | // can classifier handle the data? |
---|
461 | getCapabilities().testWithFail(data); |
---|
462 | |
---|
463 | // remove instances with missing class |
---|
464 | Instances newData = new Instances(data); |
---|
465 | newData.deleteWithMissingClass(); |
---|
466 | |
---|
467 | if (newData.numInstances() == 0) { |
---|
468 | m_Classifier.buildClassifier(newData); |
---|
469 | return; |
---|
470 | } |
---|
471 | if (newData.classAttribute().isNominal()) { |
---|
472 | m_numClasses = newData.classAttribute().numValues(); |
---|
473 | } else { |
---|
474 | m_numClasses = 1; |
---|
475 | } |
---|
476 | |
---|
477 | Instances resampledData = null; |
---|
478 | // check to see if training data has all equal weights |
---|
479 | double weight = newData.instance(0).weight(); |
---|
480 | boolean ok = false; |
---|
481 | for (int i = 1; i < newData.numInstances(); i++) { |
---|
482 | if (newData.instance(i).weight() != weight) { |
---|
483 | ok = true; |
---|
484 | break; |
---|
485 | } |
---|
486 | } |
---|
487 | |
---|
488 | if (ok) { |
---|
489 | if (!(m_Evaluator instanceof WeightedInstancesHandler) || |
---|
490 | !(m_Classifier instanceof WeightedInstancesHandler)) { |
---|
491 | Random r = new Random(1); |
---|
492 | for (int i = 0; i < 10; i++) { |
---|
493 | r.nextDouble(); |
---|
494 | } |
---|
495 | resampledData = newData.resampleWithWeights(r); |
---|
496 | } |
---|
497 | } else { |
---|
498 | // all equal weights in the training data so just use as is |
---|
499 | resampledData = newData; |
---|
500 | } |
---|
501 | |
---|
502 | m_AttributeSelection = new AttributeSelection(); |
---|
503 | m_AttributeSelection.setEvaluator(m_Evaluator); |
---|
504 | m_AttributeSelection.setSearch(m_Search); |
---|
505 | long start = System.currentTimeMillis(); |
---|
506 | m_AttributeSelection. |
---|
507 | SelectAttributes((m_Evaluator instanceof WeightedInstancesHandler) |
---|
508 | ? newData |
---|
509 | : resampledData); |
---|
510 | long end = System.currentTimeMillis(); |
---|
511 | if (m_Classifier instanceof WeightedInstancesHandler) { |
---|
512 | newData = m_AttributeSelection.reduceDimensionality(newData); |
---|
513 | m_Classifier.buildClassifier(newData); |
---|
514 | } else { |
---|
515 | resampledData = m_AttributeSelection.reduceDimensionality(resampledData); |
---|
516 | m_Classifier.buildClassifier(resampledData); |
---|
517 | } |
---|
518 | |
---|
519 | long end2 = System.currentTimeMillis(); |
---|
520 | m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected(); |
---|
521 | m_ReducedHeader = |
---|
522 | new Instances((m_Classifier instanceof WeightedInstancesHandler) ? |
---|
523 | newData |
---|
524 | : resampledData, 0); |
---|
525 | m_selectionTime = (double)(end - start); |
---|
526 | m_totalTime = (double)(end2 - start); |
---|
527 | } |
---|
528 | |
---|
529 | /** |
---|
530 | * Classifies a given instance after attribute selection |
---|
531 | * |
---|
532 | * @param instance the instance to be classified |
---|
533 | * @return the class distribution |
---|
534 | * @throws Exception if instance could not be classified |
---|
535 | * successfully |
---|
536 | */ |
---|
537 | public double [] distributionForInstance(Instance instance) |
---|
538 | throws Exception { |
---|
539 | |
---|
540 | Instance newInstance; |
---|
541 | if (m_AttributeSelection == null) { |
---|
542 | // throw new Exception("AttributeSelectedClassifier: No model built yet!"); |
---|
543 | newInstance = instance; |
---|
544 | } else { |
---|
545 | newInstance = m_AttributeSelection.reduceDimensionality(instance); |
---|
546 | } |
---|
547 | |
---|
548 | return m_Classifier.distributionForInstance(newInstance); |
---|
549 | } |
---|
550 | |
---|
551 | /** |
---|
552 | * Returns the type of graph this classifier |
---|
553 | * represents. |
---|
554 | * |
---|
555 | * @return the type of graph |
---|
556 | */ |
---|
557 | public int graphType() { |
---|
558 | |
---|
559 | if (m_Classifier instanceof Drawable) |
---|
560 | return ((Drawable)m_Classifier).graphType(); |
---|
561 | else |
---|
562 | return Drawable.NOT_DRAWABLE; |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * Returns graph describing the classifier (if possible). |
---|
567 | * |
---|
568 | * @return the graph of the classifier in dotty format |
---|
569 | * @throws Exception if the classifier cannot be graphed |
---|
570 | */ |
---|
571 | public String graph() throws Exception { |
---|
572 | |
---|
573 | if (m_Classifier instanceof Drawable) |
---|
574 | return ((Drawable)m_Classifier).graph(); |
---|
575 | else throw new Exception("Classifier: " + getClassifierSpec() |
---|
576 | + " cannot be graphed"); |
---|
577 | } |
---|
578 | |
---|
579 | /** |
---|
580 | * Output a representation of this classifier |
---|
581 | * |
---|
582 | * @return a representation of this classifier |
---|
583 | */ |
---|
584 | public String toString() { |
---|
585 | if (m_AttributeSelection == null) { |
---|
586 | return "AttributeSelectedClassifier: No attribute selection possible.\n\n" |
---|
587 | +m_Classifier.toString(); |
---|
588 | } |
---|
589 | |
---|
590 | StringBuffer result = new StringBuffer(); |
---|
591 | result.append("AttributeSelectedClassifier:\n\n"); |
---|
592 | result.append(m_AttributeSelection.toResultsString()); |
---|
593 | result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString()); |
---|
594 | result.append("\n\nClassifier Model\n"+m_Classifier.toString()); |
---|
595 | |
---|
596 | return result.toString(); |
---|
597 | } |
---|
598 | |
---|
599 | /** |
---|
600 | * Additional measure --- number of attributes selected |
---|
601 | * @return the number of attributes selected |
---|
602 | */ |
---|
603 | public double measureNumAttributesSelected() { |
---|
604 | return m_numAttributesSelected; |
---|
605 | } |
---|
606 | |
---|
607 | /** |
---|
608 | * Additional measure --- time taken (milliseconds) to select the attributes |
---|
609 | * @return the time taken to select attributes |
---|
610 | */ |
---|
611 | public double measureSelectionTime() { |
---|
612 | return m_selectionTime; |
---|
613 | } |
---|
614 | |
---|
615 | /** |
---|
616 | * Additional measure --- time taken (milliseconds) to select attributes |
---|
617 | * and build the classifier |
---|
618 | * @return the total time (select attributes + build classifier) |
---|
619 | */ |
---|
620 | public double measureTime() { |
---|
621 | return m_totalTime; |
---|
622 | } |
---|
623 | |
---|
624 | /** |
---|
625 | * Returns an enumeration of the additional measure names |
---|
626 | * @return an enumeration of the measure names |
---|
627 | */ |
---|
628 | public Enumeration enumerateMeasures() { |
---|
629 | Vector newVector = new Vector(3); |
---|
630 | newVector.addElement("measureNumAttributesSelected"); |
---|
631 | newVector.addElement("measureSelectionTime"); |
---|
632 | newVector.addElement("measureTime"); |
---|
633 | if (m_Classifier instanceof AdditionalMeasureProducer) { |
---|
634 | Enumeration en = ((AdditionalMeasureProducer)m_Classifier). |
---|
635 | enumerateMeasures(); |
---|
636 | while (en.hasMoreElements()) { |
---|
637 | String mname = (String)en.nextElement(); |
---|
638 | newVector.addElement(mname); |
---|
639 | } |
---|
640 | } |
---|
641 | return newVector.elements(); |
---|
642 | } |
---|
643 | |
---|
644 | /** |
---|
645 | * Returns the value of the named measure |
---|
646 | * @param additionalMeasureName the name of the measure to query for its value |
---|
647 | * @return the value of the named measure |
---|
648 | * @throws IllegalArgumentException if the named measure is not supported |
---|
649 | */ |
---|
650 | public double getMeasure(String additionalMeasureName) { |
---|
651 | if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) { |
---|
652 | return measureNumAttributesSelected(); |
---|
653 | } else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) { |
---|
654 | return measureSelectionTime(); |
---|
655 | } else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) { |
---|
656 | return measureTime(); |
---|
657 | } else if (m_Classifier instanceof AdditionalMeasureProducer) { |
---|
658 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
659 | getMeasure(additionalMeasureName); |
---|
660 | } else { |
---|
661 | throw new IllegalArgumentException(additionalMeasureName |
---|
662 | + " not supported (AttributeSelectedClassifier)"); |
---|
663 | } |
---|
664 | } |
---|
665 | |
---|
666 | /** |
---|
667 | * Returns the revision string. |
---|
668 | * |
---|
669 | * @return the revision |
---|
670 | */ |
---|
671 | public String getRevision() { |
---|
672 | return RevisionUtils.extract("$Revision: 1.26 $"); |
---|
673 | } |
---|
674 | |
---|
675 | /** |
---|
676 | * Main method for testing this class. |
---|
677 | * |
---|
678 | * @param argv should contain the following arguments: |
---|
679 | * -t training file [-T test file] [-c class index] |
---|
680 | */ |
---|
681 | public static void main(String [] argv) { |
---|
682 | runClassifier(new AttributeSelectedClassifier(), argv); |
---|
683 | } |
---|
684 | } |
---|