| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /** |
|---|
| 18 | * KStarNominalAttribute.java |
|---|
| 19 | * Copyright (C) 1995 Univeristy of Waikato |
|---|
| 20 | * Java port to Weka by Abdelaziz Mahoui (am14@cs.waikato.ac.nz). |
|---|
| 21 | * |
|---|
| 22 | */ |
|---|
| 23 | |
|---|
| 24 | |
|---|
| 25 | package weka.classifiers.lazy.kstar; |
|---|
| 26 | |
|---|
| 27 | import weka.core.Attribute; |
|---|
| 28 | import weka.core.Instance; |
|---|
| 29 | import weka.core.Instances; |
|---|
| 30 | import weka.core.RevisionHandler; |
|---|
| 31 | import weka.core.RevisionUtils; |
|---|
| 32 | |
|---|
| 33 | /** |
|---|
| 34 | * A custom class which provides the environment for computing the |
|---|
| 35 | * transformation probability of a specified test instance nominal |
|---|
| 36 | * attribute to a specified train instance nominal attribute. |
|---|
| 37 | * |
|---|
| 38 | * @author Len Trigg (len@reeltwo.com) |
|---|
| 39 | * @author Abdelaziz Mahoui (am14@cs.waikato.ac.nz) |
|---|
| 40 | * @version $Revision 1.0 $ |
|---|
| 41 | */ |
|---|
| 42 | public class KStarNominalAttribute |
|---|
| 43 | implements KStarConstants, RevisionHandler { |
|---|
| 44 | |
|---|
| 45 | /** The training instances used for classification. */ |
|---|
| 46 | protected Instances m_TrainSet; |
|---|
| 47 | |
|---|
| 48 | /** The test instance */ |
|---|
| 49 | protected Instance m_Test; |
|---|
| 50 | |
|---|
| 51 | /** The train instance */ |
|---|
| 52 | protected Instance m_Train; |
|---|
| 53 | |
|---|
| 54 | /** The index of the nominal attribute in the test and train instances */ |
|---|
| 55 | protected int m_AttrIndex; |
|---|
| 56 | |
|---|
| 57 | /** The stop parameter */ |
|---|
| 58 | protected double m_Stop = 1.0; |
|---|
| 59 | |
|---|
| 60 | /** Probability of test attribute transforming into train attribute |
|---|
| 61 | with missing value */ |
|---|
| 62 | protected double m_MissingProb = 1.0; |
|---|
| 63 | |
|---|
| 64 | /** Average probability of test attribute transforming into train |
|---|
| 65 | attribute */ |
|---|
| 66 | protected double m_AverageProb = 1.0; |
|---|
| 67 | |
|---|
| 68 | /** Smallest probability of test attribute transforming into |
|---|
| 69 | train attribute */ |
|---|
| 70 | protected double m_SmallestProb = 1.0; |
|---|
| 71 | |
|---|
| 72 | /** Number of trai instances with no missing attribute values */ |
|---|
| 73 | protected int m_TotalCount; |
|---|
| 74 | |
|---|
| 75 | /** Distribution of the attribute value in the train dataset */ |
|---|
| 76 | protected int [] m_Distribution; |
|---|
| 77 | |
|---|
| 78 | /** Set of colomns: each colomn representing a randomised version |
|---|
| 79 | of the train dataset class colomn */ |
|---|
| 80 | protected int [][] m_RandClassCols; |
|---|
| 81 | |
|---|
| 82 | /** A cache for storing attribute values and their corresponding |
|---|
| 83 | stop parameters */ |
|---|
| 84 | protected KStarCache m_Cache; |
|---|
| 85 | |
|---|
| 86 | // KStar Global settings |
|---|
| 87 | |
|---|
| 88 | /** The number of instances in the dataset */ |
|---|
| 89 | protected int m_NumInstances; |
|---|
| 90 | |
|---|
| 91 | /** The number of class values */ |
|---|
| 92 | protected int m_NumClasses; |
|---|
| 93 | |
|---|
| 94 | /** The number of attributes */ |
|---|
| 95 | protected int m_NumAttributes; |
|---|
| 96 | |
|---|
| 97 | /** The class attribute type */ |
|---|
| 98 | protected int m_ClassType; |
|---|
| 99 | |
|---|
| 100 | /** missing value treatment */ |
|---|
| 101 | protected int m_MissingMode = M_AVERAGE; |
|---|
| 102 | |
|---|
| 103 | /** B_SPHERE = use specified blend, B_ENTROPY = entropic blend setting */ |
|---|
| 104 | protected int m_BlendMethod = B_SPHERE ; |
|---|
| 105 | |
|---|
| 106 | /** default sphere of influence blend setting */ |
|---|
| 107 | protected int m_BlendFactor = 20; |
|---|
| 108 | |
|---|
| 109 | /** |
|---|
| 110 | * Constructor |
|---|
| 111 | */ |
|---|
| 112 | public KStarNominalAttribute(Instance test, Instance train, int attrIndex, |
|---|
| 113 | Instances trainSet, int [][] randClassCol, |
|---|
| 114 | KStarCache cache) |
|---|
| 115 | { |
|---|
| 116 | m_Test = test; |
|---|
| 117 | m_Train = train; |
|---|
| 118 | m_AttrIndex = attrIndex; |
|---|
| 119 | m_TrainSet = trainSet; |
|---|
| 120 | m_RandClassCols = randClassCol; |
|---|
| 121 | m_Cache = cache; |
|---|
| 122 | init(); |
|---|
| 123 | } |
|---|
| 124 | |
|---|
| 125 | /** |
|---|
| 126 | * Initializes the m_Attributes of the class. |
|---|
| 127 | */ |
|---|
| 128 | private void init() { |
|---|
| 129 | try { |
|---|
| 130 | m_NumInstances = m_TrainSet.numInstances(); |
|---|
| 131 | m_NumClasses = m_TrainSet.numClasses(); |
|---|
| 132 | m_NumAttributes = m_TrainSet.numAttributes(); |
|---|
| 133 | m_ClassType = m_TrainSet.classAttribute().type(); |
|---|
| 134 | } catch(Exception e) { |
|---|
| 135 | e.printStackTrace(); |
|---|
| 136 | } |
|---|
| 137 | } |
|---|
| 138 | |
|---|
| 139 | /** |
|---|
| 140 | * Calculates the probability of the indexed nominal attribute of the test |
|---|
| 141 | * instance transforming into the indexed nominal attribute of the training |
|---|
| 142 | * instance. |
|---|
| 143 | * |
|---|
| 144 | * @return the value of the transformation probability. |
|---|
| 145 | */ |
|---|
| 146 | public double transProb() { |
|---|
| 147 | String debug = "(KStarNominalAttribute.transProb) "; |
|---|
| 148 | double transProb = 0.0; |
|---|
| 149 | // check if the attribute value has been encountred before |
|---|
| 150 | // in which case it should be in the nominal cache |
|---|
| 151 | if (m_Cache.containsKey(m_Test.value(m_AttrIndex))) { |
|---|
| 152 | KStarCache.TableEntry te = |
|---|
| 153 | m_Cache.getCacheValues(m_Test.value(m_AttrIndex)); |
|---|
| 154 | m_Stop = te.value; |
|---|
| 155 | m_MissingProb = te.pmiss; |
|---|
| 156 | } |
|---|
| 157 | else { |
|---|
| 158 | generateAttrDistribution(); |
|---|
| 159 | // we have to compute the parameters |
|---|
| 160 | if (m_BlendMethod == B_ENTROPY) { |
|---|
| 161 | m_Stop = stopProbUsingEntropy(); |
|---|
| 162 | } |
|---|
| 163 | else { // default is B_SPHERE |
|---|
| 164 | m_Stop = stopProbUsingBlend(); |
|---|
| 165 | } |
|---|
| 166 | // store the values in cache |
|---|
| 167 | m_Cache.store( m_Test.value(m_AttrIndex), m_Stop, m_MissingProb ); |
|---|
| 168 | } |
|---|
| 169 | // we've got our m_Stop, then what? |
|---|
| 170 | if (m_Train.isMissing(m_AttrIndex)) { |
|---|
| 171 | transProb = m_MissingProb; |
|---|
| 172 | } |
|---|
| 173 | else { |
|---|
| 174 | try { |
|---|
| 175 | transProb = (1.0 - m_Stop) / m_Test.attribute(m_AttrIndex).numValues(); |
|---|
| 176 | if ( (int)m_Test.value(m_AttrIndex) == |
|---|
| 177 | (int)m_Train.value(m_AttrIndex) ) |
|---|
| 178 | { |
|---|
| 179 | transProb += m_Stop; |
|---|
| 180 | } |
|---|
| 181 | } catch (Exception e) { |
|---|
| 182 | e.printStackTrace(); |
|---|
| 183 | } |
|---|
| 184 | } |
|---|
| 185 | return transProb; |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | /** |
|---|
| 189 | * Calculates the "stop parameter" for this attribute using |
|---|
| 190 | * the entropy method: the value is computed using a root finder |
|---|
| 191 | * algorithm. The method takes advantage of the calculation to |
|---|
| 192 | * compute the smallest and average transformation probabilities |
|---|
| 193 | * once the stop factor is obtained. It also sets the transformation |
|---|
| 194 | * probability to an attribute with a missing value. |
|---|
| 195 | * |
|---|
| 196 | * @return the value of the stop parameter. |
|---|
| 197 | * |
|---|
| 198 | */ |
|---|
| 199 | private double stopProbUsingEntropy() { |
|---|
| 200 | String debug = "(KStarNominalAttribute.stopProbUsingEntropy)"; |
|---|
| 201 | if ( m_ClassType != Attribute.NOMINAL ) { |
|---|
| 202 | System.err.println("Error: "+debug+" attribute class must be nominal!"); |
|---|
| 203 | System.exit(1); |
|---|
| 204 | } |
|---|
| 205 | int itcount = 0; |
|---|
| 206 | double stopProb; |
|---|
| 207 | double lower, upper, pstop; |
|---|
| 208 | double bestminprob = 0.0, bestpsum = 0.0; |
|---|
| 209 | double bestdiff = 0.0, bestpstop = 0.0; |
|---|
| 210 | double currentdiff, lastdiff, stepsize, delta; |
|---|
| 211 | |
|---|
| 212 | KStarWrapper botvals = new KStarWrapper(); |
|---|
| 213 | KStarWrapper upvals = new KStarWrapper(); |
|---|
| 214 | KStarWrapper vals = new KStarWrapper(); |
|---|
| 215 | |
|---|
| 216 | // Initial values for root finder |
|---|
| 217 | lower = 0.0 + ROOT_FINDER_ACCURACY/2.0; |
|---|
| 218 | upper = 1.0 - ROOT_FINDER_ACCURACY/2.0; |
|---|
| 219 | |
|---|
| 220 | // Find (approx) entropy ranges |
|---|
| 221 | calculateEntropy(upper, upvals); |
|---|
| 222 | calculateEntropy(lower, botvals); |
|---|
| 223 | |
|---|
| 224 | if (upvals.avgProb == 0) { |
|---|
| 225 | // When there are no training instances with the test value: |
|---|
| 226 | // doesn't matter what exact value we use for pstop, just acts as |
|---|
| 227 | // a constant scale factor in this case. |
|---|
| 228 | calculateEntropy(lower, vals); |
|---|
| 229 | } |
|---|
| 230 | else |
|---|
| 231 | { |
|---|
| 232 | // Optimise the scale factor |
|---|
| 233 | if ( (upvals.randEntropy - upvals.actEntropy < |
|---|
| 234 | botvals.randEntropy - botvals.actEntropy) && |
|---|
| 235 | (botvals.randEntropy - botvals.actEntropy > FLOOR) ) |
|---|
| 236 | { |
|---|
| 237 | bestpstop = pstop = lower; |
|---|
| 238 | stepsize = INITIAL_STEP; |
|---|
| 239 | bestminprob = botvals.minProb; |
|---|
| 240 | bestpsum = botvals.avgProb; |
|---|
| 241 | } |
|---|
| 242 | else { |
|---|
| 243 | bestpstop = pstop = upper; |
|---|
| 244 | stepsize = -INITIAL_STEP; |
|---|
| 245 | bestminprob = upvals.minProb; |
|---|
| 246 | bestpsum = upvals.avgProb; |
|---|
| 247 | } |
|---|
| 248 | bestdiff = currentdiff = FLOOR; |
|---|
| 249 | itcount = 0; |
|---|
| 250 | /* Enter the root finder */ |
|---|
| 251 | while (true) |
|---|
| 252 | { |
|---|
| 253 | itcount++; |
|---|
| 254 | lastdiff = currentdiff; |
|---|
| 255 | pstop += stepsize; |
|---|
| 256 | if (pstop <= lower) { |
|---|
| 257 | pstop = lower; |
|---|
| 258 | currentdiff = 0.0; |
|---|
| 259 | delta = -1.0; |
|---|
| 260 | } |
|---|
| 261 | else if (pstop >= upper) { |
|---|
| 262 | pstop = upper; |
|---|
| 263 | currentdiff = 0.0; |
|---|
| 264 | delta = -1.0; |
|---|
| 265 | } |
|---|
| 266 | else { |
|---|
| 267 | calculateEntropy(pstop, vals); |
|---|
| 268 | currentdiff = vals.randEntropy - vals.actEntropy; |
|---|
| 269 | |
|---|
| 270 | if (currentdiff < FLOOR) { |
|---|
| 271 | currentdiff = FLOOR; |
|---|
| 272 | if ((Math.abs(stepsize) < INITIAL_STEP) && |
|---|
| 273 | (bestdiff == FLOOR)) { |
|---|
| 274 | bestpstop = lower; |
|---|
| 275 | bestminprob = botvals.minProb; |
|---|
| 276 | bestpsum = botvals.avgProb; |
|---|
| 277 | break; |
|---|
| 278 | } |
|---|
| 279 | } |
|---|
| 280 | delta = currentdiff - lastdiff; |
|---|
| 281 | } |
|---|
| 282 | if (currentdiff > bestdiff) { |
|---|
| 283 | bestdiff = currentdiff; |
|---|
| 284 | bestpstop = pstop; |
|---|
| 285 | bestminprob = vals.minProb; |
|---|
| 286 | bestpsum = vals.avgProb; |
|---|
| 287 | } |
|---|
| 288 | if (delta < 0) { |
|---|
| 289 | if (Math.abs(stepsize) < ROOT_FINDER_ACCURACY) { |
|---|
| 290 | break; |
|---|
| 291 | } |
|---|
| 292 | else { |
|---|
| 293 | stepsize /= -2.0; |
|---|
| 294 | } |
|---|
| 295 | } |
|---|
| 296 | if (itcount > ROOT_FINDER_MAX_ITER) { |
|---|
| 297 | break; |
|---|
| 298 | } |
|---|
| 299 | } |
|---|
| 300 | } |
|---|
| 301 | |
|---|
| 302 | m_SmallestProb = bestminprob; |
|---|
| 303 | m_AverageProb = bestpsum; |
|---|
| 304 | // Set the probability of transforming to a missing value |
|---|
| 305 | switch ( m_MissingMode ) |
|---|
| 306 | { |
|---|
| 307 | case M_DELETE: |
|---|
| 308 | m_MissingProb = 0.0; |
|---|
| 309 | break; |
|---|
| 310 | case M_NORMAL: |
|---|
| 311 | m_MissingProb = 1.0; |
|---|
| 312 | break; |
|---|
| 313 | case M_MAXDIFF: |
|---|
| 314 | m_MissingProb = m_SmallestProb; |
|---|
| 315 | break; |
|---|
| 316 | case M_AVERAGE: |
|---|
| 317 | m_MissingProb = m_AverageProb; |
|---|
| 318 | break; |
|---|
| 319 | } |
|---|
| 320 | |
|---|
| 321 | if ( Math.abs(bestpsum - (double)m_TotalCount) < EPSILON) { |
|---|
| 322 | // No difference in the values |
|---|
| 323 | stopProb = 1.0; |
|---|
| 324 | } |
|---|
| 325 | else { |
|---|
| 326 | stopProb = bestpstop; |
|---|
| 327 | } |
|---|
| 328 | return stopProb; |
|---|
| 329 | } |
|---|
| 330 | |
|---|
| 331 | /** |
|---|
| 332 | * Calculates the entropy of the actual class prediction |
|---|
| 333 | * and the entropy for random class prediction. It also |
|---|
| 334 | * calculates the smallest and average transformation probabilities. |
|---|
| 335 | * |
|---|
| 336 | * @param stop the stop parameter |
|---|
| 337 | * @param params the object wrapper for the parameters: |
|---|
| 338 | * actual entropy, random entropy, average probability and smallest |
|---|
| 339 | * probability. |
|---|
| 340 | * @return the values are returned in the object "params". |
|---|
| 341 | * |
|---|
| 342 | */ |
|---|
| 343 | private void calculateEntropy( double stop, KStarWrapper params) { |
|---|
| 344 | String debug = "(KStarNominalAttribute.calculateEntropy)"; |
|---|
| 345 | int i,j,k; |
|---|
| 346 | Instance train; |
|---|
| 347 | double actent = 0.0, randent=0.0; |
|---|
| 348 | double pstar, tprob, psum=0.0, minprob=1.0; |
|---|
| 349 | double actClassProb, randClassProb; |
|---|
| 350 | double [][] pseudoClassProb = new double[NUM_RAND_COLS+1][m_NumClasses]; |
|---|
| 351 | // init ... |
|---|
| 352 | for(j = 0; j <= NUM_RAND_COLS; j++) { |
|---|
| 353 | for(i = 0; i < m_NumClasses; i++) { |
|---|
| 354 | pseudoClassProb[j][i] = 0.0; |
|---|
| 355 | } |
|---|
| 356 | } |
|---|
| 357 | for (i=0; i < m_NumInstances; i++) { |
|---|
| 358 | train = m_TrainSet.instance(i); |
|---|
| 359 | if (!train.isMissing(m_AttrIndex)) { |
|---|
| 360 | pstar = PStar(m_Test, train, m_AttrIndex, stop); |
|---|
| 361 | tprob = pstar / m_TotalCount; |
|---|
| 362 | if (pstar < minprob) { |
|---|
| 363 | minprob = pstar; |
|---|
| 364 | } |
|---|
| 365 | psum += tprob; |
|---|
| 366 | // filter instances with same class value |
|---|
| 367 | for (k=0 ; k <= NUM_RAND_COLS ; k++) { |
|---|
| 368 | // instance i is assigned a random class value in colomn k; |
|---|
| 369 | // colomn k = NUM_RAND_COLS contains the original mapping: |
|---|
| 370 | // instance -> class vlaue |
|---|
| 371 | pseudoClassProb[k][ m_RandClassCols[k][i] ] += tprob; |
|---|
| 372 | } |
|---|
| 373 | } |
|---|
| 374 | } |
|---|
| 375 | // compute the actual entropy using the class probs |
|---|
| 376 | // with the original class value mapping (colomn NUM_RAND_COLS) |
|---|
| 377 | for (j=m_NumClasses-1; j>=0; j--) { |
|---|
| 378 | actClassProb = pseudoClassProb[NUM_RAND_COLS][j] / psum; |
|---|
| 379 | if (actClassProb > 0) { |
|---|
| 380 | actent -= actClassProb * Math.log(actClassProb) / LOG2; |
|---|
| 381 | } |
|---|
| 382 | } |
|---|
| 383 | // compute a random entropy using the pseudo class probs |
|---|
| 384 | // excluding the colomn NUM_RAND_COLS |
|---|
| 385 | for (k=0; k < NUM_RAND_COLS;k++) { |
|---|
| 386 | for (i = m_NumClasses-1; i >= 0; i--) { |
|---|
| 387 | randClassProb = pseudoClassProb[k][i] / psum; |
|---|
| 388 | if (randClassProb > 0) { |
|---|
| 389 | randent -= randClassProb * Math.log(randClassProb) / LOG2; |
|---|
| 390 | } |
|---|
| 391 | } |
|---|
| 392 | } |
|---|
| 393 | randent /= NUM_RAND_COLS; |
|---|
| 394 | // return the results ... Yuk !!! |
|---|
| 395 | params.actEntropy = actent; |
|---|
| 396 | params.randEntropy = randent; |
|---|
| 397 | params.avgProb = psum; |
|---|
| 398 | params.minProb = minprob; |
|---|
| 399 | } |
|---|
| 400 | |
|---|
| 401 | /** |
|---|
| 402 | * Calculates the "stop parameter" for this attribute using |
|---|
| 403 | * the blend method: the value is computed using a root finder |
|---|
| 404 | * algorithm. The method takes advantage of this calculation to |
|---|
| 405 | * compute the smallest and average transformation probabilities |
|---|
| 406 | * once the stop factor is obtained. It also sets the transformation |
|---|
| 407 | * probability to an attribute with a missing value. |
|---|
| 408 | * |
|---|
| 409 | * @return the value of the stop parameter. |
|---|
| 410 | * |
|---|
| 411 | */ |
|---|
| 412 | private double stopProbUsingBlend() { |
|---|
| 413 | String debug = "(KStarNominalAttribute.stopProbUsingBlend) "; |
|---|
| 414 | int itcount = 0; |
|---|
| 415 | double stopProb, aimfor; |
|---|
| 416 | double lower, upper, tstop; |
|---|
| 417 | |
|---|
| 418 | KStarWrapper botvals = new KStarWrapper(); |
|---|
| 419 | KStarWrapper upvals = new KStarWrapper(); |
|---|
| 420 | KStarWrapper vals = new KStarWrapper(); |
|---|
| 421 | |
|---|
| 422 | int testvalue = (int)m_Test.value(m_AttrIndex); |
|---|
| 423 | aimfor = (m_TotalCount - m_Distribution[testvalue]) * |
|---|
| 424 | (double)m_BlendFactor / 100.0 + m_Distribution[testvalue]; |
|---|
| 425 | |
|---|
| 426 | // Initial values for root finder |
|---|
| 427 | tstop = 1.0 - (double)m_BlendFactor / 100.0; |
|---|
| 428 | lower = 0.0 + ROOT_FINDER_ACCURACY/2.0; |
|---|
| 429 | upper = 1.0 - ROOT_FINDER_ACCURACY/2.0; |
|---|
| 430 | |
|---|
| 431 | // Find out function border values |
|---|
| 432 | calculateSphereSize(testvalue, lower, botvals); |
|---|
| 433 | botvals.sphere -= aimfor; |
|---|
| 434 | calculateSphereSize(testvalue, upper, upvals); |
|---|
| 435 | upvals.sphere -= aimfor; |
|---|
| 436 | |
|---|
| 437 | if (upvals.avgProb == 0) { |
|---|
| 438 | // When there are no training instances with the test value: |
|---|
| 439 | // doesn't matter what exact value we use for tstop, just acts as |
|---|
| 440 | // a constant scale factor in this case. |
|---|
| 441 | calculateSphereSize(testvalue, tstop, vals); |
|---|
| 442 | } |
|---|
| 443 | else if (upvals.sphere > 0) { |
|---|
| 444 | // Can't include aimfor instances, going for min possible |
|---|
| 445 | tstop = upper; |
|---|
| 446 | vals.avgProb = upvals.avgProb; |
|---|
| 447 | } |
|---|
| 448 | else { |
|---|
| 449 | // Enter the root finder |
|---|
| 450 | for (;;) { |
|---|
| 451 | itcount++; |
|---|
| 452 | calculateSphereSize(testvalue, tstop, vals); |
|---|
| 453 | vals.sphere -= aimfor; |
|---|
| 454 | if ( Math.abs(vals.sphere) <= ROOT_FINDER_ACCURACY || |
|---|
| 455 | itcount >= ROOT_FINDER_MAX_ITER ) |
|---|
| 456 | { |
|---|
| 457 | break; |
|---|
| 458 | } |
|---|
| 459 | if (vals.sphere > 0.0) { |
|---|
| 460 | lower = tstop; |
|---|
| 461 | tstop = (upper + lower) / 2.0; |
|---|
| 462 | } |
|---|
| 463 | else { |
|---|
| 464 | upper = tstop; |
|---|
| 465 | tstop = (upper + lower) / 2.0; |
|---|
| 466 | } |
|---|
| 467 | } |
|---|
| 468 | } |
|---|
| 469 | |
|---|
| 470 | m_SmallestProb = vals.minProb; |
|---|
| 471 | m_AverageProb = vals.avgProb; |
|---|
| 472 | // Set the probability of transforming to a missing value |
|---|
| 473 | switch ( m_MissingMode ) |
|---|
| 474 | { |
|---|
| 475 | case M_DELETE: |
|---|
| 476 | m_MissingProb = 0.0; |
|---|
| 477 | break; |
|---|
| 478 | case M_NORMAL: |
|---|
| 479 | m_MissingProb = 1.0; |
|---|
| 480 | break; |
|---|
| 481 | case M_MAXDIFF: |
|---|
| 482 | m_MissingProb = m_SmallestProb; |
|---|
| 483 | break; |
|---|
| 484 | case M_AVERAGE: |
|---|
| 485 | m_MissingProb = m_AverageProb; |
|---|
| 486 | break; |
|---|
| 487 | } |
|---|
| 488 | |
|---|
| 489 | if ( Math.abs(vals.avgProb - m_TotalCount) < EPSILON) { |
|---|
| 490 | // No difference in the values |
|---|
| 491 | stopProb = 1.0; |
|---|
| 492 | } |
|---|
| 493 | else { |
|---|
| 494 | stopProb = tstop; |
|---|
| 495 | } |
|---|
| 496 | return stopProb; |
|---|
| 497 | } |
|---|
| 498 | |
|---|
| 499 | /** |
|---|
| 500 | * Calculates the size of the "sphere of influence" defined as: |
|---|
| 501 | * sphere = sum(P^2)/sum(P)^2 |
|---|
| 502 | * P(i|j) = (1-tstop)*P(i) + ((i==j)?tstop:0). |
|---|
| 503 | * This method takes advantage of the calculation to compute the values of |
|---|
| 504 | * the "smallest" and "average" transformation probabilities when using |
|---|
| 505 | * the specified stop parameter. |
|---|
| 506 | * |
|---|
| 507 | * @param testValue the value of the test instance |
|---|
| 508 | * @param stop the stop parameter |
|---|
| 509 | * @param params a wrapper of the parameters to be computed: |
|---|
| 510 | * "sphere" the sphere size |
|---|
| 511 | * "avgprob" the average transformation probability |
|---|
| 512 | * "minProb" the smallest transformation probability |
|---|
| 513 | * @return the values are returned in "params" object. |
|---|
| 514 | * |
|---|
| 515 | */ |
|---|
| 516 | private void calculateSphereSize(int testvalue, double stop, |
|---|
| 517 | KStarWrapper params) { |
|---|
| 518 | String debug = "(KStarNominalAttribute.calculateSphereSize) "; |
|---|
| 519 | int i, thiscount; |
|---|
| 520 | double tprob, tval = 0.0, t1 = 0.0; |
|---|
| 521 | double sphere, minprob = 1.0, transprob = 0.0; |
|---|
| 522 | |
|---|
| 523 | for(i = 0; i < m_Distribution.length; i++) { |
|---|
| 524 | thiscount = m_Distribution[i]; |
|---|
| 525 | if ( thiscount != 0 ) { |
|---|
| 526 | if ( testvalue == i ) { |
|---|
| 527 | tprob = (stop + (1 - stop) / m_Distribution.length) / m_TotalCount; |
|---|
| 528 | tval += tprob * thiscount; |
|---|
| 529 | t1 += tprob * tprob * thiscount; |
|---|
| 530 | } |
|---|
| 531 | else { |
|---|
| 532 | tprob = ((1 - stop) / m_Distribution.length) / m_TotalCount; |
|---|
| 533 | tval += tprob * thiscount; |
|---|
| 534 | t1 += tprob * tprob * thiscount; |
|---|
| 535 | } |
|---|
| 536 | if ( minprob > tprob * m_TotalCount ) { |
|---|
| 537 | minprob = tprob * m_TotalCount; |
|---|
| 538 | } |
|---|
| 539 | } |
|---|
| 540 | } |
|---|
| 541 | transprob = tval; |
|---|
| 542 | sphere = (t1 == 0) ? 0 : ((tval * tval) / t1); |
|---|
| 543 | // return values ... Yck!!! |
|---|
| 544 | params.sphere = sphere; |
|---|
| 545 | params.avgProb = transprob; |
|---|
| 546 | params.minProb = minprob; |
|---|
| 547 | } |
|---|
| 548 | |
|---|
| 549 | /** |
|---|
| 550 | * Calculates the nominal probability function defined as: |
|---|
| 551 | * P(i|j) = (1-stop) * P(i) + ((i==j) ? stop : 0) |
|---|
| 552 | * In this case, it calculates the transformation probability of the |
|---|
| 553 | * indexed test attribute to the indexed train attribute. |
|---|
| 554 | * |
|---|
| 555 | * @param test the test instance |
|---|
| 556 | * @param train the train instance |
|---|
| 557 | * @param col the attribute index |
|---|
| 558 | * @return the value of the tranformation probability. |
|---|
| 559 | * |
|---|
| 560 | */ |
|---|
| 561 | private double PStar(Instance test, Instance train, int col, double stop) { |
|---|
| 562 | String debug = "(KStarNominalAttribute.PStar) "; |
|---|
| 563 | double pstar; |
|---|
| 564 | int numvalues = 0; |
|---|
| 565 | try { |
|---|
| 566 | numvalues = test.attribute(col).numValues(); |
|---|
| 567 | } catch (Exception ex) { |
|---|
| 568 | ex.printStackTrace(); |
|---|
| 569 | } |
|---|
| 570 | if ( (int)test.value(col) == (int)train.value(col) ) { |
|---|
| 571 | pstar = stop + (1 - stop) / numvalues; |
|---|
| 572 | } |
|---|
| 573 | else { |
|---|
| 574 | pstar = (1 - stop) / numvalues; |
|---|
| 575 | } |
|---|
| 576 | return pstar; |
|---|
| 577 | } |
|---|
| 578 | |
|---|
| 579 | /** |
|---|
| 580 | * Calculates the distribution, in the dataset, of the indexed nominal |
|---|
| 581 | * attribute values. It also counts the actual number of training instances |
|---|
| 582 | * that contributed (those with non-missing values) to calculate the |
|---|
| 583 | * distribution. |
|---|
| 584 | */ |
|---|
| 585 | private void generateAttrDistribution() { |
|---|
| 586 | String debug = "(KStarNominalAttribute.generateAttrDistribution)"; |
|---|
| 587 | m_Distribution = new int[ m_TrainSet.attribute(m_AttrIndex).numValues() ]; |
|---|
| 588 | int i; |
|---|
| 589 | Instance train; |
|---|
| 590 | for (i=0; i < m_NumInstances; i++) { |
|---|
| 591 | train = m_TrainSet.instance(i); |
|---|
| 592 | if ( !train.isMissing(m_AttrIndex) ) { |
|---|
| 593 | m_TotalCount++; |
|---|
| 594 | m_Distribution[(int)train.value(m_AttrIndex)]++; |
|---|
| 595 | } |
|---|
| 596 | } |
|---|
| 597 | } |
|---|
| 598 | |
|---|
| 599 | /** |
|---|
| 600 | * Sets the options. |
|---|
| 601 | * |
|---|
| 602 | */ |
|---|
| 603 | public void setOptions(int missingmode, int blendmethod, int blendfactor) { |
|---|
| 604 | m_MissingMode = missingmode; |
|---|
| 605 | m_BlendMethod = blendmethod; |
|---|
| 606 | m_BlendFactor = blendfactor; |
|---|
| 607 | } |
|---|
| 608 | |
|---|
| 609 | /** |
|---|
| 610 | * Returns the revision string. |
|---|
| 611 | * |
|---|
| 612 | * @return the revision |
|---|
| 613 | */ |
|---|
| 614 | public String getRevision() { |
|---|
| 615 | return RevisionUtils.extract("$Revision: 1.7 $"); |
|---|
| 616 | } |
|---|
| 617 | } // class |
|---|