| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or (at |
|---|
| 5 | * your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, but |
|---|
| 8 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|---|
| 10 | * General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
|---|
| 15 | |
|---|
| 16 | /* |
|---|
| 17 | * MixtureDistribution.java |
|---|
| 18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 19 | * |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.classifiers.functions.pace; |
|---|
| 23 | |
|---|
| 24 | import weka.core.RevisionHandler; |
|---|
| 25 | import weka.core.TechnicalInformation; |
|---|
| 26 | import weka.core.TechnicalInformationHandler; |
|---|
| 27 | import weka.core.TechnicalInformation.Field; |
|---|
| 28 | import weka.core.TechnicalInformation.Type; |
|---|
| 29 | import weka.core.matrix.DoubleVector; |
|---|
| 30 | import weka.core.matrix.IntVector; |
|---|
| 31 | |
|---|
| 32 | /** |
|---|
| 33 | * Abtract class for manipulating mixture distributions. <p> |
|---|
| 34 | * |
|---|
| 35 | * REFERENCES <p> |
|---|
| 36 | * |
|---|
| 37 | * Wang, Y. (2000). "A new approach to fitting linear models in high |
|---|
| 38 | * dimensional spaces." PhD Thesis. Department of Computer Science, |
|---|
| 39 | * University of Waikato, New Zealand. <p> |
|---|
| 40 | * |
|---|
| 41 | * Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability |
|---|
| 42 | * prediction." Proceedings of ICML'2002. Sydney. <p> |
|---|
| 43 | * |
|---|
| 44 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
|---|
| 45 | * @version $Revision: 1.5 $ */ |
|---|
| 46 | |
|---|
| 47 | public abstract class MixtureDistribution |
|---|
| 48 | implements TechnicalInformationHandler, RevisionHandler { |
|---|
| 49 | |
|---|
| 50 | protected DiscreteFunction mixingDistribution; |
|---|
| 51 | |
|---|
| 52 | /** The nonnegative-measure-based method */ |
|---|
| 53 | public static final int NNMMethod = 1; |
|---|
| 54 | |
|---|
| 55 | /** The probability-measure-based method */ |
|---|
| 56 | public static final int PMMethod = 2; |
|---|
| 57 | |
|---|
| 58 | // The CDF-based method |
|---|
| 59 | // public static final int CDFMethod = 3; |
|---|
| 60 | |
|---|
| 61 | // The method based on the Kolmogrov and von Mises measure |
|---|
| 62 | // public static final int ModifiedCDFMethod = 4; |
|---|
| 63 | |
|---|
| 64 | /** |
|---|
| 65 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 66 | * detailed information about the technical background of this class, |
|---|
| 67 | * e.g., paper reference or book this class is based on. |
|---|
| 68 | * |
|---|
| 69 | * @return the technical information about this class |
|---|
| 70 | */ |
|---|
| 71 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 72 | TechnicalInformation result; |
|---|
| 73 | TechnicalInformation additional; |
|---|
| 74 | |
|---|
| 75 | result = new TechnicalInformation(Type.PHDTHESIS); |
|---|
| 76 | result.setValue(Field.AUTHOR, "Wang, Y"); |
|---|
| 77 | result.setValue(Field.YEAR, "2000"); |
|---|
| 78 | result.setValue(Field.TITLE, "A new approach to fitting linear models in high dimensional spaces"); |
|---|
| 79 | result.setValue(Field.SCHOOL, "Department of Computer Science, University of Waikato"); |
|---|
| 80 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
|---|
| 81 | |
|---|
| 82 | additional = result.add(Type.INPROCEEDINGS); |
|---|
| 83 | additional.setValue(Field.AUTHOR, "Wang, Y. and Witten, I. H."); |
|---|
| 84 | additional.setValue(Field.YEAR, "2002"); |
|---|
| 85 | additional.setValue(Field.TITLE, "Modeling for optimal probability prediction"); |
|---|
| 86 | additional.setValue(Field.BOOKTITLE, "Proceedings of the Nineteenth International Conference in Machine Learning"); |
|---|
| 87 | additional.setValue(Field.YEAR, "2002"); |
|---|
| 88 | additional.setValue(Field.PAGES, "650-657"); |
|---|
| 89 | additional.setValue(Field.ADDRESS, "Sydney, Australia"); |
|---|
| 90 | |
|---|
| 91 | return result; |
|---|
| 92 | } |
|---|
| 93 | |
|---|
| 94 | /** |
|---|
| 95 | * Gets the mixing distribution |
|---|
| 96 | * |
|---|
| 97 | * @return the mixing distribution |
|---|
| 98 | */ |
|---|
| 99 | public DiscreteFunction getMixingDistribution() { |
|---|
| 100 | return mixingDistribution; |
|---|
| 101 | } |
|---|
| 102 | |
|---|
| 103 | /** Sets the mixing distribution |
|---|
| 104 | * @param d the mixing distribution |
|---|
| 105 | */ |
|---|
| 106 | public void setMixingDistribution( DiscreteFunction d ) { |
|---|
| 107 | mixingDistribution = d; |
|---|
| 108 | } |
|---|
| 109 | |
|---|
| 110 | /** Fits the mixture (or mixing) distribution to the data. The default |
|---|
| 111 | * method is the nonnegative-measure-based method. |
|---|
| 112 | * @param data the data, supposedly generated from the mixture model */ |
|---|
| 113 | public void fit( DoubleVector data ) { |
|---|
| 114 | fit( data, NNMMethod ); |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | /** Fits the mixture (or mixing) distribution to the data. |
|---|
| 118 | * @param data the data supposedly generated from the mixture |
|---|
| 119 | * @param method the method to be used. Refer to the static final |
|---|
| 120 | * variables of this class. */ |
|---|
| 121 | public void fit( DoubleVector data, int method ) { |
|---|
| 122 | DoubleVector data2 = (DoubleVector) data.clone(); |
|---|
| 123 | if( data2.unsorted() ) data2.sort(); |
|---|
| 124 | |
|---|
| 125 | int n = data2.size(); |
|---|
| 126 | int start = 0; |
|---|
| 127 | DoubleVector subset; |
|---|
| 128 | DiscreteFunction d = new DiscreteFunction(); |
|---|
| 129 | for( int i = 0; i < n-1; i++ ) { |
|---|
| 130 | if( separable( data2, start, i, data2.get(i+1) ) && |
|---|
| 131 | separable( data2, i+1, n-1, data2.get(i) ) ) { |
|---|
| 132 | subset = (DoubleVector) data2.subvector( start, i ); |
|---|
| 133 | d.plusEquals( fitForSingleCluster( subset, method ). |
|---|
| 134 | timesEquals(i - start + 1) ); |
|---|
| 135 | start = i + 1; |
|---|
| 136 | } |
|---|
| 137 | } |
|---|
| 138 | subset = (DoubleVector) data2.subvector( start, n-1 ); |
|---|
| 139 | d.plusEquals( fitForSingleCluster( subset, method ). |
|---|
| 140 | timesEquals(n - start) ); |
|---|
| 141 | d.sort(); |
|---|
| 142 | d.normalize(); |
|---|
| 143 | mixingDistribution = d; |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | /** |
|---|
| 147 | * Fits the mixture (or mixing) distribution to the data. The data is |
|---|
| 148 | * not pre-clustered for computational efficiency. |
|---|
| 149 | * |
|---|
| 150 | * @param data the data supposedly generated from the mixture |
|---|
| 151 | * @param method the method to be used. Refer to the static final |
|---|
| 152 | * variables of this class. |
|---|
| 153 | * @return the generated distribution |
|---|
| 154 | */ |
|---|
| 155 | public DiscreteFunction fitForSingleCluster( DoubleVector data, |
|---|
| 156 | int method ) { |
|---|
| 157 | |
|---|
| 158 | if( data.size() < 2 ) return new DiscreteFunction( data ); |
|---|
| 159 | DoubleVector sp = supportPoints( data, 0 ); |
|---|
| 160 | PaceMatrix fi = fittingIntervals( data ); |
|---|
| 161 | PaceMatrix pm = probabilityMatrix( sp, fi ); |
|---|
| 162 | PaceMatrix epm = new |
|---|
| 163 | PaceMatrix( empiricalProbability( data, fi ). |
|---|
| 164 | timesEquals( 1. / data.size() ) ); |
|---|
| 165 | |
|---|
| 166 | IntVector pvt = (IntVector) IntVector.seq(0, sp.size()-1); |
|---|
| 167 | DoubleVector weights; |
|---|
| 168 | |
|---|
| 169 | switch( method ) { |
|---|
| 170 | case NNMMethod: |
|---|
| 171 | weights = pm.nnls( epm, pvt ); |
|---|
| 172 | break; |
|---|
| 173 | case PMMethod: |
|---|
| 174 | weights = pm.nnlse1( epm, pvt ); |
|---|
| 175 | break; |
|---|
| 176 | default: |
|---|
| 177 | throw new IllegalArgumentException("unknown method"); |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | DoubleVector sp2 = new DoubleVector( pvt.size() ); |
|---|
| 181 | for( int i = 0; i < sp2.size(); i++ ){ |
|---|
| 182 | sp2.set( i, sp.get(pvt.get(i)) ); |
|---|
| 183 | } |
|---|
| 184 | |
|---|
| 185 | DiscreteFunction d = new DiscreteFunction( sp2, weights ); |
|---|
| 186 | d.sort(); |
|---|
| 187 | d.normalize(); |
|---|
| 188 | return d; |
|---|
| 189 | } |
|---|
| 190 | |
|---|
| 191 | /** |
|---|
| 192 | * Return true if a value can be considered for mixture estimatino |
|---|
| 193 | * separately from the data indexed between i0 and i1 |
|---|
| 194 | * |
|---|
| 195 | * @param data the data supposedly generated from the mixture |
|---|
| 196 | * @param i0 the index of the first element in the group |
|---|
| 197 | * @param i1 the index of the last element in the group |
|---|
| 198 | * @param x the value |
|---|
| 199 | * @return true if a value can be considered |
|---|
| 200 | */ |
|---|
| 201 | public abstract boolean separable( DoubleVector data, |
|---|
| 202 | int i0, int i1, double x ); |
|---|
| 203 | |
|---|
| 204 | /** |
|---|
| 205 | * Contructs the set of support points for mixture estimation. |
|---|
| 206 | * |
|---|
| 207 | * @param data the data supposedly generated from the mixture |
|---|
| 208 | * @param ne the number of extra data that are suppposedly discarded |
|---|
| 209 | * earlier and not passed into here |
|---|
| 210 | * @return the set of support points |
|---|
| 211 | */ |
|---|
| 212 | public abstract DoubleVector supportPoints( DoubleVector data, int ne ); |
|---|
| 213 | |
|---|
| 214 | /** |
|---|
| 215 | * Contructs the set of fitting intervals for mixture estimation. |
|---|
| 216 | * |
|---|
| 217 | * @param data the data supposedly generated from the mixture |
|---|
| 218 | * @return the set of fitting intervals |
|---|
| 219 | */ |
|---|
| 220 | public abstract PaceMatrix fittingIntervals( DoubleVector data ); |
|---|
| 221 | |
|---|
| 222 | /** |
|---|
| 223 | * Contructs the probability matrix for mixture estimation, given a set |
|---|
| 224 | * of support points and a set of intervals. |
|---|
| 225 | * |
|---|
| 226 | * @param s the set of support points |
|---|
| 227 | * @param intervals the intervals |
|---|
| 228 | * @return the probability matrix |
|---|
| 229 | */ |
|---|
| 230 | public abstract PaceMatrix probabilityMatrix( DoubleVector s, |
|---|
| 231 | PaceMatrix intervals ); |
|---|
| 232 | |
|---|
| 233 | /** |
|---|
| 234 | * Computes the empirical probabilities of the data over a set of |
|---|
| 235 | * intervals. |
|---|
| 236 | * |
|---|
| 237 | * @param data the data |
|---|
| 238 | * @param intervals the intervals |
|---|
| 239 | * @return the empirical probabilities |
|---|
| 240 | */ |
|---|
| 241 | public PaceMatrix empiricalProbability( DoubleVector data, |
|---|
| 242 | PaceMatrix intervals ) |
|---|
| 243 | { |
|---|
| 244 | int n = data.size(); |
|---|
| 245 | int k = intervals.getRowDimension(); |
|---|
| 246 | PaceMatrix epm = new PaceMatrix( k, 1, 0 ); |
|---|
| 247 | |
|---|
| 248 | double point; |
|---|
| 249 | for( int j = 0; j < n; j ++ ) { |
|---|
| 250 | for(int i = 0; i < k; i++ ) { |
|---|
| 251 | point = 0.0; |
|---|
| 252 | if( intervals.get(i, 0) == data.get(j) || |
|---|
| 253 | intervals.get(i, 1) == data.get(j) ) point = 0.5; |
|---|
| 254 | else if( intervals.get(i, 0) < data.get(j) && |
|---|
| 255 | intervals.get(i, 1) > data.get(j) ) point = 1.0; |
|---|
| 256 | epm.setPlus( i, 0, point); |
|---|
| 257 | } |
|---|
| 258 | } |
|---|
| 259 | return epm; |
|---|
| 260 | } |
|---|
| 261 | |
|---|
| 262 | /** |
|---|
| 263 | * Converts to a string |
|---|
| 264 | * |
|---|
| 265 | * @return a string representation |
|---|
| 266 | */ |
|---|
| 267 | public String toString() |
|---|
| 268 | { |
|---|
| 269 | return "The mixing distribution:\n" + mixingDistribution.toString(); |
|---|
| 270 | } |
|---|
| 271 | |
|---|
| 272 | } |
|---|
| 273 | |
|---|