| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or (at |
|---|
| 5 | * your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, but |
|---|
| 8 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|---|
| 10 | * General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
|---|
| 15 | |
|---|
| 16 | /* |
|---|
| 17 | * ChisqMixture.java |
|---|
| 18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 19 | * |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.classifiers.functions.pace; |
|---|
| 23 | |
|---|
| 24 | import weka.core.RevisionUtils; |
|---|
| 25 | import weka.core.matrix.DoubleVector; |
|---|
| 26 | import weka.core.matrix.Maths; |
|---|
| 27 | |
|---|
| 28 | import java.util.Random; |
|---|
| 29 | |
|---|
| 30 | /** |
|---|
| 31 | * Class for manipulating chi-square mixture distributions. <p/> |
|---|
| 32 | * |
|---|
| 33 | * For more information see: <p/> |
|---|
| 34 | * |
|---|
| 35 | <!-- technical-plaintext-start --> |
|---|
| 36 | * Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.<br/> |
|---|
| 37 | * <br/> |
|---|
| 38 | * Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002. |
|---|
| 39 | <!-- technical-plaintext-end --> |
|---|
| 40 | * |
|---|
| 41 | <!-- technical-bibtex-start --> |
|---|
| 42 | * BibTeX: |
|---|
| 43 | * <pre> |
|---|
| 44 | * @phdthesis{Wang2000, |
|---|
| 45 | * address = {Hamilton, New Zealand}, |
|---|
| 46 | * author = {Wang, Y}, |
|---|
| 47 | * school = {Department of Computer Science, University of Waikato}, |
|---|
| 48 | * title = {A new approach to fitting linear models in high dimensional spaces}, |
|---|
| 49 | * year = {2000} |
|---|
| 50 | * } |
|---|
| 51 | * |
|---|
| 52 | * @inproceedings{Wang2002, |
|---|
| 53 | * address = {Sydney, Australia}, |
|---|
| 54 | * author = {Wang, Y. and Witten, I. H.}, |
|---|
| 55 | * booktitle = {Proceedings of the Nineteenth International Conference in Machine Learning}, |
|---|
| 56 | * pages = {650-657}, |
|---|
| 57 | * title = {Modeling for optimal probability prediction}, |
|---|
| 58 | * year = {2002} |
|---|
| 59 | * } |
|---|
| 60 | * </pre> |
|---|
| 61 | * <p/> |
|---|
| 62 | <!-- technical-bibtex-end --> |
|---|
| 63 | * |
|---|
| 64 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
|---|
| 65 | * @version $Revision: 1.5 $ |
|---|
| 66 | */ |
|---|
| 67 | public class ChisqMixture |
|---|
| 68 | extends MixtureDistribution { |
|---|
| 69 | |
|---|
| 70 | /** the separating threshold value */ |
|---|
| 71 | protected double separatingThreshold = 0.05; |
|---|
| 72 | |
|---|
| 73 | /** the triming thresholding */ |
|---|
| 74 | protected double trimingThreshold = 0.5; |
|---|
| 75 | |
|---|
| 76 | protected double supportThreshold = 0.5; |
|---|
| 77 | |
|---|
| 78 | protected int maxNumSupportPoints = 200; // for computational reason |
|---|
| 79 | |
|---|
| 80 | protected int fittingIntervalLength = 3; |
|---|
| 81 | |
|---|
| 82 | protected double fittingIntervalThreshold = 0.5; |
|---|
| 83 | |
|---|
| 84 | /** Contructs an empty ChisqMixture |
|---|
| 85 | */ |
|---|
| 86 | public ChisqMixture() {} |
|---|
| 87 | |
|---|
| 88 | /** |
|---|
| 89 | * Gets the separating threshold value. This value is used by the method |
|---|
| 90 | * separatable |
|---|
| 91 | * |
|---|
| 92 | * @return the separating threshold |
|---|
| 93 | */ |
|---|
| 94 | public double getSeparatingThreshold() { |
|---|
| 95 | return separatingThreshold; |
|---|
| 96 | } |
|---|
| 97 | |
|---|
| 98 | /** |
|---|
| 99 | * Sets the separating threshold value |
|---|
| 100 | * |
|---|
| 101 | * @param t the threshold value |
|---|
| 102 | */ |
|---|
| 103 | public void setSeparatingThreshold( double t ) { |
|---|
| 104 | separatingThreshold = t; |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | /** |
|---|
| 108 | * Gets the triming thresholding value. This value is usef by the method trim. |
|---|
| 109 | * |
|---|
| 110 | * @return the triming threshold |
|---|
| 111 | */ |
|---|
| 112 | public double getTrimingThreshold() { |
|---|
| 113 | return trimingThreshold; |
|---|
| 114 | } |
|---|
| 115 | |
|---|
| 116 | /** |
|---|
| 117 | * Sets the triming thresholding value. |
|---|
| 118 | * |
|---|
| 119 | * @param t the triming threshold |
|---|
| 120 | */ |
|---|
| 121 | public void setTrimingThreshold( double t ){ |
|---|
| 122 | trimingThreshold = t; |
|---|
| 123 | } |
|---|
| 124 | |
|---|
| 125 | /** |
|---|
| 126 | * Return true if a value can be considered for mixture estimation |
|---|
| 127 | * separately from the data indexed between i0 and i1 |
|---|
| 128 | * |
|---|
| 129 | * @param data the data supposedly generated from the mixture |
|---|
| 130 | * @param i0 the index of the first element in the group |
|---|
| 131 | * @param i1 the index of the last element in the group |
|---|
| 132 | * @param x the value |
|---|
| 133 | * @return true if the value can be considered |
|---|
| 134 | */ |
|---|
| 135 | public boolean separable( DoubleVector data, int i0, int i1, double x ) { |
|---|
| 136 | |
|---|
| 137 | DoubleVector dataSqrt = data.sqrt(); |
|---|
| 138 | double xh = Math.sqrt( x ); |
|---|
| 139 | |
|---|
| 140 | NormalMixture m = new NormalMixture(); |
|---|
| 141 | m.setSeparatingThreshold( separatingThreshold ); |
|---|
| 142 | return m.separable( dataSqrt, i0, i1, xh ); |
|---|
| 143 | } |
|---|
| 144 | |
|---|
| 145 | /** |
|---|
| 146 | * Contructs the set of support points for mixture estimation. |
|---|
| 147 | * |
|---|
| 148 | * @param data the data supposedly generated from the mixture |
|---|
| 149 | * @param ne the number of extra data that are suppposedly discarded |
|---|
| 150 | * earlier and not passed into here |
|---|
| 151 | * @return the set of support points |
|---|
| 152 | */ |
|---|
| 153 | public DoubleVector supportPoints( DoubleVector data, int ne ) { |
|---|
| 154 | |
|---|
| 155 | DoubleVector sp = new DoubleVector(); |
|---|
| 156 | sp.setCapacity( data.size() + 1 ); |
|---|
| 157 | |
|---|
| 158 | if( data.get(0) < supportThreshold || ne != 0 ) |
|---|
| 159 | sp.addElement( 0 ); |
|---|
| 160 | for( int i = 0; i < data.size(); i++ ) |
|---|
| 161 | if( data.get( i ) > supportThreshold ) |
|---|
| 162 | sp.addElement( data.get(i) ); |
|---|
| 163 | |
|---|
| 164 | // The following will be fixed later??? |
|---|
| 165 | if( sp.size() > maxNumSupportPoints ) |
|---|
| 166 | throw new IllegalArgumentException( "Too many support points. " ); |
|---|
| 167 | |
|---|
| 168 | return sp; |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | /** |
|---|
| 172 | * Contructs the set of fitting intervals for mixture estimation. |
|---|
| 173 | * |
|---|
| 174 | * @param data the data supposedly generated from the mixture |
|---|
| 175 | * @return the set of fitting intervals |
|---|
| 176 | */ |
|---|
| 177 | public PaceMatrix fittingIntervals( DoubleVector data ) { |
|---|
| 178 | |
|---|
| 179 | PaceMatrix a = new PaceMatrix( data.size() * 2, 2 ); |
|---|
| 180 | DoubleVector v = data.sqrt(); |
|---|
| 181 | int count = 0; |
|---|
| 182 | double left, right; |
|---|
| 183 | for( int i = 0; i < data.size(); i++ ) { |
|---|
| 184 | left = v.get(i) - fittingIntervalLength; |
|---|
| 185 | if( left < fittingIntervalThreshold ) left = 0; |
|---|
| 186 | left = left * left; |
|---|
| 187 | right = data.get(i); |
|---|
| 188 | if( right < fittingIntervalThreshold ) |
|---|
| 189 | right = fittingIntervalThreshold; |
|---|
| 190 | a.set( count, 0, left ); |
|---|
| 191 | a.set( count, 1, right ); |
|---|
| 192 | count++; |
|---|
| 193 | } |
|---|
| 194 | for( int i = 0; i < data.size(); i++ ) { |
|---|
| 195 | left = data.get(i); |
|---|
| 196 | if( left < fittingIntervalThreshold ) left = 0; |
|---|
| 197 | right = v.get(i) + fittingIntervalThreshold; |
|---|
| 198 | right = right * right; |
|---|
| 199 | a.set( count, 0, left ); |
|---|
| 200 | a.set( count, 1, right ); |
|---|
| 201 | count++; |
|---|
| 202 | } |
|---|
| 203 | a.setRowDimension( count ); |
|---|
| 204 | |
|---|
| 205 | return a; |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | /** |
|---|
| 209 | * Contructs the probability matrix for mixture estimation, given a set |
|---|
| 210 | * of support points and a set of intervals. |
|---|
| 211 | * |
|---|
| 212 | * @param s the set of support points |
|---|
| 213 | * @param intervals the intervals |
|---|
| 214 | * @return the probability matrix |
|---|
| 215 | */ |
|---|
| 216 | public PaceMatrix probabilityMatrix(DoubleVector s, PaceMatrix intervals) { |
|---|
| 217 | |
|---|
| 218 | int ns = s.size(); |
|---|
| 219 | int nr = intervals.getRowDimension(); |
|---|
| 220 | PaceMatrix p = new PaceMatrix(nr, ns); |
|---|
| 221 | |
|---|
| 222 | for( int i = 0; i < nr; i++ ) { |
|---|
| 223 | for( int j = 0; j < ns; j++ ) { |
|---|
| 224 | p.set( i, j, |
|---|
| 225 | Maths.pchisq( intervals.get(i, 1), s.get(j) ) - |
|---|
| 226 | Maths.pchisq( intervals.get(i, 0), s.get(j) ) ); |
|---|
| 227 | } |
|---|
| 228 | } |
|---|
| 229 | |
|---|
| 230 | return p; |
|---|
| 231 | } |
|---|
| 232 | |
|---|
| 233 | |
|---|
| 234 | /** |
|---|
| 235 | * Returns the pace6 estimate of a single value. |
|---|
| 236 | * |
|---|
| 237 | * @param x the value |
|---|
| 238 | * @return the pace6 estimate |
|---|
| 239 | */ |
|---|
| 240 | public double pace6 ( double x ) { |
|---|
| 241 | |
|---|
| 242 | if( x > 100 ) return x; // pratical consideration. will modify later |
|---|
| 243 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 244 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 245 | DoubleVector mean = points.sqrt(); |
|---|
| 246 | |
|---|
| 247 | DoubleVector d = Maths.dchisqLog( x, points ); |
|---|
| 248 | d.minusEquals( d.max() ); |
|---|
| 249 | d = d.map("java.lang.Math", "exp").timesEquals( values ); |
|---|
| 250 | double atilde = mean.innerProduct( d ) / d.sum(); |
|---|
| 251 | return atilde * atilde; |
|---|
| 252 | } |
|---|
| 253 | |
|---|
| 254 | /** |
|---|
| 255 | * Returns the pace6 estimate of a vector. |
|---|
| 256 | * |
|---|
| 257 | * @param x the vector |
|---|
| 258 | * @return the pace6 estimate |
|---|
| 259 | */ |
|---|
| 260 | public DoubleVector pace6( DoubleVector x ) { |
|---|
| 261 | |
|---|
| 262 | DoubleVector pred = new DoubleVector( x.size() ); |
|---|
| 263 | for(int i = 0; i < x.size(); i++ ) |
|---|
| 264 | pred.set(i, pace6(x.get(i)) ); |
|---|
| 265 | trim( pred ); |
|---|
| 266 | return pred; |
|---|
| 267 | } |
|---|
| 268 | |
|---|
| 269 | /** |
|---|
| 270 | * Returns the pace2 estimate of a vector. |
|---|
| 271 | * |
|---|
| 272 | * @param x the vector |
|---|
| 273 | * @return the pace2 estimate |
|---|
| 274 | */ |
|---|
| 275 | public DoubleVector pace2( DoubleVector x ) { |
|---|
| 276 | |
|---|
| 277 | DoubleVector chf = new DoubleVector( x.size() ); |
|---|
| 278 | for(int i = 0; i < x.size(); i++ ) chf.set( i, hf( x.get(i) ) ); |
|---|
| 279 | |
|---|
| 280 | chf.cumulateInPlace(); |
|---|
| 281 | |
|---|
| 282 | int index = chf.indexOfMax(); |
|---|
| 283 | |
|---|
| 284 | DoubleVector copy = x.copy(); |
|---|
| 285 | if( index < x.size()-1 ) copy.set( index + 1, x.size()-1, 0 ); |
|---|
| 286 | trim( copy ); |
|---|
| 287 | return copy; |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | /** |
|---|
| 291 | * Returns the pace4 estimate of a vector. |
|---|
| 292 | * |
|---|
| 293 | * @param x the vector |
|---|
| 294 | * @return the pace4 estimate |
|---|
| 295 | */ |
|---|
| 296 | public DoubleVector pace4( DoubleVector x ) { |
|---|
| 297 | |
|---|
| 298 | DoubleVector h = h( x ); |
|---|
| 299 | DoubleVector copy = x.copy(); |
|---|
| 300 | for( int i = 0; i < x.size(); i++ ) |
|---|
| 301 | if( h.get(i) <= 0 ) copy.set(i, 0); |
|---|
| 302 | trim( copy ); |
|---|
| 303 | return copy; |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | /** |
|---|
| 307 | * Trims the small values of the estaimte |
|---|
| 308 | * |
|---|
| 309 | * @param x the estimate vector |
|---|
| 310 | */ |
|---|
| 311 | public void trim( DoubleVector x ) { |
|---|
| 312 | |
|---|
| 313 | for(int i = 0; i < x.size(); i++ ) { |
|---|
| 314 | if( x.get(i) <= trimingThreshold ) x.set(i, 0); |
|---|
| 315 | } |
|---|
| 316 | } |
|---|
| 317 | |
|---|
| 318 | /** |
|---|
| 319 | * Computes the value of h(x) / f(x) given the mixture. The |
|---|
| 320 | * implementation avoided overflow. |
|---|
| 321 | * |
|---|
| 322 | * @param AHat the value |
|---|
| 323 | * @return the value of h(x) / f(x) |
|---|
| 324 | */ |
|---|
| 325 | public double hf( double AHat ) { |
|---|
| 326 | |
|---|
| 327 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 328 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 329 | |
|---|
| 330 | double x = Math.sqrt( AHat ); |
|---|
| 331 | DoubleVector mean = points.sqrt(); |
|---|
| 332 | DoubleVector d1 = Maths.dnormLog( x, mean, 1 ); |
|---|
| 333 | double d1max = d1.max(); |
|---|
| 334 | d1.minusEquals( d1max ); |
|---|
| 335 | DoubleVector d2 = Maths.dnormLog( -x, mean, 1 ); |
|---|
| 336 | d2.minusEquals( d1max ); |
|---|
| 337 | |
|---|
| 338 | d1 = d1.map("java.lang.Math", "exp"); |
|---|
| 339 | d1.timesEquals( values ); |
|---|
| 340 | d2 = d2.map("java.lang.Math", "exp"); |
|---|
| 341 | d2.timesEquals( values ); |
|---|
| 342 | |
|---|
| 343 | return ( ( points.minus(x/2)).innerProduct( d1 ) - |
|---|
| 344 | ( points.plus(x/2)).innerProduct( d2 ) ) |
|---|
| 345 | / (d1.sum() + d2.sum()); |
|---|
| 346 | } |
|---|
| 347 | |
|---|
| 348 | /** |
|---|
| 349 | * Computes the value of h(x) given the mixture. |
|---|
| 350 | * |
|---|
| 351 | * @param AHat the value |
|---|
| 352 | * @return the value of h(x) |
|---|
| 353 | */ |
|---|
| 354 | public double h( double AHat ) { |
|---|
| 355 | |
|---|
| 356 | if( AHat == 0.0 ) return 0.0; |
|---|
| 357 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 358 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 359 | |
|---|
| 360 | double aHat = Math.sqrt( AHat ); |
|---|
| 361 | DoubleVector aStar = points.sqrt(); |
|---|
| 362 | DoubleVector d1 = Maths.dnorm( aHat, aStar, 1 ).timesEquals( values ); |
|---|
| 363 | DoubleVector d2 = Maths.dnorm( -aHat, aStar, 1 ).timesEquals( values ); |
|---|
| 364 | |
|---|
| 365 | return points.minus(aHat/2).innerProduct( d1 ) - |
|---|
| 366 | points.plus(aHat/2).innerProduct( d2 ); |
|---|
| 367 | } |
|---|
| 368 | |
|---|
| 369 | /** |
|---|
| 370 | * Computes the value of h(x) given the mixture, where x is a vector. |
|---|
| 371 | * |
|---|
| 372 | * @param AHat the vector |
|---|
| 373 | * @return the value of h(x) |
|---|
| 374 | */ |
|---|
| 375 | public DoubleVector h( DoubleVector AHat ) { |
|---|
| 376 | |
|---|
| 377 | DoubleVector h = new DoubleVector( AHat.size() ); |
|---|
| 378 | for( int i = 0; i < AHat.size(); i++ ) |
|---|
| 379 | h.set( i, h( AHat.get(i) ) ); |
|---|
| 380 | return h; |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | /** |
|---|
| 384 | * Computes the value of f(x) given the mixture. |
|---|
| 385 | * |
|---|
| 386 | * @param x the value |
|---|
| 387 | * @return the value of f(x) |
|---|
| 388 | */ |
|---|
| 389 | public double f( double x ) { |
|---|
| 390 | |
|---|
| 391 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 392 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 393 | |
|---|
| 394 | return Maths.dchisq(x, points).timesEquals(values).sum(); |
|---|
| 395 | } |
|---|
| 396 | |
|---|
| 397 | /** |
|---|
| 398 | * Computes the value of f(x) given the mixture, where x is a vector. |
|---|
| 399 | * |
|---|
| 400 | * @param x the vector |
|---|
| 401 | * @return the value of f(x) |
|---|
| 402 | */ |
|---|
| 403 | public DoubleVector f( DoubleVector x ) { |
|---|
| 404 | |
|---|
| 405 | DoubleVector f = new DoubleVector( x.size() ); |
|---|
| 406 | for( int i = 0; i < x.size(); i++ ) |
|---|
| 407 | f.set( i, h( f.get(i) ) ); |
|---|
| 408 | return f; |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | /** |
|---|
| 412 | * Converts to a string |
|---|
| 413 | * |
|---|
| 414 | * @return a string representation |
|---|
| 415 | */ |
|---|
| 416 | public String toString() { |
|---|
| 417 | return mixingDistribution.toString(); |
|---|
| 418 | } |
|---|
| 419 | |
|---|
| 420 | /** |
|---|
| 421 | * Returns the revision string. |
|---|
| 422 | * |
|---|
| 423 | * @return the revision |
|---|
| 424 | */ |
|---|
| 425 | public String getRevision() { |
|---|
| 426 | return RevisionUtils.extract("$Revision: 1.5 $"); |
|---|
| 427 | } |
|---|
| 428 | |
|---|
| 429 | /** |
|---|
| 430 | * Method to test this class |
|---|
| 431 | * |
|---|
| 432 | * @param args the commandline arguments |
|---|
| 433 | */ |
|---|
| 434 | public static void main(String args[]) { |
|---|
| 435 | |
|---|
| 436 | int n1 = 50; |
|---|
| 437 | int n2 = 50; |
|---|
| 438 | double ncp1 = 0; |
|---|
| 439 | double ncp2 = 10; |
|---|
| 440 | double mu1 = Math.sqrt( ncp1 ); |
|---|
| 441 | double mu2 = Math.sqrt( ncp2 ); |
|---|
| 442 | DoubleVector a = Maths.rnorm( n1, mu1, 1, new Random() ); |
|---|
| 443 | a = a.cat( Maths.rnorm(n2, mu2, 1, new Random()) ); |
|---|
| 444 | DoubleVector aNormal = a; |
|---|
| 445 | a = a.square(); |
|---|
| 446 | a.sort(); |
|---|
| 447 | |
|---|
| 448 | DoubleVector means = (new DoubleVector( n1, mu1 )).cat(new DoubleVector(n2, mu2)); |
|---|
| 449 | |
|---|
| 450 | System.out.println("=========================================================="); |
|---|
| 451 | System.out.println("This is to test the estimation of the mixing\n" + |
|---|
| 452 | "distribution of the mixture of non-central Chi-square\n" + |
|---|
| 453 | "distributions. The example mixture used is of the form: \n\n" + |
|---|
| 454 | " 0.5 * Chi^2_1(ncp1) + 0.5 * Chi^2_1(ncp2)\n" ); |
|---|
| 455 | |
|---|
| 456 | System.out.println("It also tests the PACE estimators. Quadratic losses of the\n" + |
|---|
| 457 | "estimators are given, measuring their performance."); |
|---|
| 458 | System.out.println("=========================================================="); |
|---|
| 459 | System.out.println( "ncp1 = " + ncp1 + " ncp2 = " + ncp2 +"\n" ); |
|---|
| 460 | |
|---|
| 461 | System.out.println( a.size() + " observations are: \n\n" + a ); |
|---|
| 462 | |
|---|
| 463 | System.out.println( "\nQuadratic loss of the raw data (i.e., the MLE) = " + |
|---|
| 464 | aNormal.sum2( means ) ); |
|---|
| 465 | System.out.println("=========================================================="); |
|---|
| 466 | |
|---|
| 467 | // find the mixing distribution |
|---|
| 468 | ChisqMixture d = new ChisqMixture(); |
|---|
| 469 | d.fit( a, NNMMethod ); |
|---|
| 470 | System.out.println( "The estimated mixing distribution is\n" + d ); |
|---|
| 471 | |
|---|
| 472 | DoubleVector pred = d.pace2( a.rev() ).rev(); |
|---|
| 473 | System.out.println( "\nThe PACE2 Estimate = \n" + pred ); |
|---|
| 474 | System.out.println( "Quadratic loss = " + |
|---|
| 475 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
|---|
| 476 | |
|---|
| 477 | pred = d.pace4( a ); |
|---|
| 478 | System.out.println( "\nThe PACE4 Estimate = \n" + pred ); |
|---|
| 479 | System.out.println( "Quadratic loss = " + |
|---|
| 480 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
|---|
| 481 | |
|---|
| 482 | pred = d.pace6( a ); |
|---|
| 483 | System.out.println( "\nThe PACE6 Estimate = \n" + pred ); |
|---|
| 484 | System.out.println( "Quadratic loss = " + |
|---|
| 485 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
|---|
| 486 | } |
|---|
| 487 | } |
|---|