/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Winnow.java
* Copyright (C) 2002 J. Lindgren
*
*/
package weka.classifiers.functions;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
* Implements Winnow and Balanced Winnow algorithms by Littlestone.
*
* For more information, see
*
* N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.
*
* N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.
*
* Does classification for problems with nominal attributes (which it converts into binary attributes).
*
* @article{Littlestone1988, * author = {N. Littlestone}, * journal = {Machine Learning}, * pages = {285-318}, * title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm}, * volume = {2}, * year = {1988} * } * * @techreport{Littlestone1989, * address = {University of California, Santa Cruz}, * author = {N. Littlestone}, * institution = {University of California}, * note = {Technical Report UCSC-CRL-89-11}, * title = {Mistake bounds and logarithmic linear-threshold learning algorithms}, * year = {1989} * } ** * * Valid options are: * *
-L * Use the baLanced version * (default false)* *
-I <int> * The number of iterations to be performed. * (default 1)* *
-A <double> * Promotion coefficient alpha. * (default 2.0)* *
-B <double> * Demotion coefficient beta. * (default 0.5)* *
-H <double> * Prediction threshold. * (default -1.0 == number of attributes)* *
-W <double> * Starting weights. * (default 2.0)* *
-S <int> * Default random seed. * (default 1)* * * @author J. Lindgren (jtlindgr at cs.helsinki.fi) * @version $Revision: 5928 $ */ public class Winnow extends AbstractClassifier implements UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3543770107994321324L; /** Use the balanced variant? **/ protected boolean m_Balanced; /** The number of iterations **/ protected int m_numIterations = 1; /** The promotion coefficient **/ protected double m_Alpha = 2.0; /** The demotion coefficient **/ protected double m_Beta = 0.5; /** Prediction threshold, <0 == numAttributes **/ protected double m_Threshold = -1.0; /** Random seed used for shuffling the dataset, -1 == disable **/ protected int m_Seed = 1; /** Accumulated mistake count (for statistics) **/ protected int m_Mistakes; /** Starting weights for the prediction vector(s) **/ protected double m_defaultWeight = 2.0; /** The weight vector for prediction (pos) */ private double[] m_predPosVector = null; /** The weight vector for prediction (neg) */ private double[] m_predNegVector = null; /** The true threshold used for prediction **/ private double m_actualThreshold; /** The training instances */ private Instances m_Train = null; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements Winnow and Balanced Winnow algorithms by " + "Littlestone.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString() + "\n\n" + "Does classification for problems with nominal attributes " + "(which it converts into binary attributes)."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "N. Littlestone"); result.setValue(Field.YEAR, "1988"); result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "2"); result.setValue(Field.PAGES, "285-318"); additional = result.add(Type.TECHREPORT); additional.setValue(Field.AUTHOR, "N. Littlestone"); additional.setValue(Field.YEAR, "1989"); additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms"); additional.setValue(Field.INSTITUTION, "University of California"); additional.setValue(Field.ADDRESS, "University of California, Santa Cruz"); additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option("\tUse the baLanced version\n" + "\t(default false)", "L", 0, "-L")); newVector.addElement(new Option("\tThe number of iterations to be performed.\n" + "\t(default 1)", "I", 1, "-I
-L * Use the baLanced version * (default false)* *
-I <int> * The number of iterations to be performed. * (default 1)* *
-A <double> * Promotion coefficient alpha. * (default 2.0)* *
-B <double> * Demotion coefficient beta. * (default 0.5)* *
-H <double> * Prediction threshold. * (default -1.0 == number of attributes)* *
-W <double> * Starting weights. * (default 2.0)* *
-S <int> * Default random seed. * (default 1)* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { m_Balanced = Utils.getFlag('L', options); String iterationsString = Utils.getOption('I', options); if (iterationsString.length() != 0) { m_numIterations = Integer.parseInt(iterationsString); } String alphaString = Utils.getOption('A', options); if (alphaString.length() != 0) { m_Alpha = (new Double(alphaString)).doubleValue(); } String betaString = Utils.getOption('B', options); if (betaString.length() != 0) { m_Beta = (new Double(betaString)).doubleValue(); } String tString = Utils.getOption('H', options); if (tString.length() != 0) { m_Threshold = (new Double(tString)).doubleValue(); } String wString = Utils.getOption('W', options); if (wString.length() != 0) { m_defaultWeight = (new Double(wString)).doubleValue(); } String rString = Utils.getOption('S', options); if (rString.length() != 0) { m_Seed = Integer.parseInt(rString); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String [20]; int current = 0; if(m_Balanced) { options[current++] = "-L"; } options[current++] = "-I"; options[current++] = "" + m_numIterations; options[current++] = "-A"; options[current++] = "" + m_Alpha; options[current++] = "-B"; options[current++] = "" + m_Beta; options[current++] = "-H"; options[current++] = "" + m_Threshold; options[current++] = "-W"; options[current++] = "" + m_defaultWeight; options[current++] = "-S"; options[current++] = "" + m_Seed; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Builds the classifier * * @param insts the data to train the classifier with * @throws Exception if something goes wrong during building */ public void buildClassifier(Instances insts) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); // Filter data m_Train = new Instances(insts); m_ReplaceMissingValues = new ReplaceMissingValues(); m_ReplaceMissingValues.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues); m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_NominalToBinary); /** Randomize training data */ if(m_Seed != -1) { m_Train.randomize(new Random(m_Seed)); } /** Make space to store weights */ m_predPosVector = new double[m_Train.numAttributes()]; if(m_Balanced) { m_predNegVector = new double[m_Train.numAttributes()]; } /** Initialize the weights to starting values **/ for(int i = 0; i < m_Train.numAttributes(); i++) m_predPosVector[i] = m_defaultWeight; if(m_Balanced) { for(int i = 0; i < m_Train.numAttributes(); i++) { m_predNegVector[i] = m_defaultWeight; } } /** Set actual prediction threshold **/ if(m_Threshold<0) { m_actualThreshold = (double)m_Train.numAttributes()-1; } else { m_actualThreshold = m_Threshold; } m_Mistakes=0; /** Compute the weight vectors **/ if(m_Balanced) { for (int it = 0; it < m_numIterations; it++) { for (int i = 0; i < m_Train.numInstances(); i++) { actualUpdateClassifierBalanced(m_Train.instance(i)); } } } else { for (int it = 0; it < m_numIterations; it++) { for (int i = 0; i < m_Train.numInstances(); i++) { actualUpdateClassifier(m_Train.instance(i)); } } } } /** * Updates the classifier with a new learning example * * @param instance the instance to update the classifier with * @throws Exception if something goes wrong */ public void updateClassifier(Instance instance) throws Exception { m_ReplaceMissingValues.input(instance); m_ReplaceMissingValues.batchFinished(); Instance filtered = m_ReplaceMissingValues.output(); m_NominalToBinary.input(filtered); m_NominalToBinary.batchFinished(); filtered = m_NominalToBinary.output(); if(m_Balanced) { actualUpdateClassifierBalanced(filtered); } else { actualUpdateClassifier(filtered); } } /** * Actual update routine for prefiltered instances * * @param inst the instance to update the classifier with * @throws Exception if something goes wrong */ private void actualUpdateClassifier(Instance inst) throws Exception { double posmultiplier; if (!inst.classIsMissing()) { double prediction = makePrediction(inst); if (prediction != inst.classValue()) { m_Mistakes++; if(prediction == 0) { /* false neg: promote */ posmultiplier=m_Alpha; } else { /* false pos: demote */ posmultiplier=m_Beta; } int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int l = 0 ; l < n1 ; l++) { if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { m_predPosVector[inst.index(l)]*=posmultiplier; } } //Utils.normalize(m_predPosVector); } } else { System.out.println("CLASS MISSING"); } } /** * Actual update routine (balanced) for prefiltered instances * * @param inst the instance to update the classifier with * @throws Exception if something goes wrong */ private void actualUpdateClassifierBalanced(Instance inst) throws Exception { double posmultiplier,negmultiplier; if (!inst.classIsMissing()) { double prediction = makePredictionBalanced(inst); if (prediction != inst.classValue()) { m_Mistakes++; if(prediction == 0) { /* false neg: promote positive, demote negative*/ posmultiplier=m_Alpha; negmultiplier=m_Beta; } else { /* false pos: demote positive, promote negative */ posmultiplier=m_Beta; negmultiplier=m_Alpha; } int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int l = 0 ; l < n1 ; l++) { if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { m_predPosVector[inst.index(l)]*=posmultiplier; m_predNegVector[inst.index(l)]*=negmultiplier; } } //Utils.normalize(m_predPosVector); //Utils.normalize(m_predNegVector); } } else { System.out.println("CLASS MISSING"); } } /** * Outputs the prediction for the given instance. * * @param inst the instance for which prediction is to be computed * @return the prediction * @throws Exception if something goes wrong */ public double classifyInstance(Instance inst) throws Exception { m_ReplaceMissingValues.input(inst); m_ReplaceMissingValues.batchFinished(); Instance filtered = m_ReplaceMissingValues.output(); m_NominalToBinary.input(filtered); m_NominalToBinary.batchFinished(); filtered = m_NominalToBinary.output(); if(m_Balanced) { return(makePredictionBalanced(filtered)); } else { return(makePrediction(filtered)); } } /** * Compute the actual prediction for prefiltered instance * * @param inst the instance for which prediction is to be computed * @return the prediction * @throws Exception if something goes wrong */ private double makePrediction(Instance inst) throws Exception { double total = 0; int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int i=0;i