[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * SimpleLinearRegression.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.functions; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.Attribute; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | import weka.core.WeightedInstancesHandler; |
---|
| 34 | import weka.core.Capabilities.Capability; |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | <!-- globalinfo-start --> |
---|
| 38 | * Learns a simple linear regression model. Picks the attribute that results in the lowest squared error. Missing values are not allowed. Can only deal with numeric attributes. |
---|
| 39 | * <p/> |
---|
| 40 | <!-- globalinfo-end --> |
---|
| 41 | * |
---|
| 42 | <!-- options-start --> |
---|
| 43 | * Valid options are: <p/> |
---|
| 44 | * |
---|
| 45 | * <pre> -D |
---|
| 46 | * If set, classifier is run in debug mode and |
---|
| 47 | * may output additional info to the console</pre> |
---|
| 48 | * |
---|
| 49 | <!-- options-end --> |
---|
| 50 | * |
---|
| 51 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 52 | * @version $Revision: 5928 $ |
---|
| 53 | */ |
---|
| 54 | public class SimpleLinearRegression extends AbstractClassifier |
---|
| 55 | implements WeightedInstancesHandler { |
---|
| 56 | |
---|
| 57 | /** for serialization */ |
---|
| 58 | static final long serialVersionUID = 1679336022895414137L; |
---|
| 59 | |
---|
| 60 | /** The chosen attribute */ |
---|
| 61 | private Attribute m_attribute; |
---|
| 62 | |
---|
| 63 | /** The index of the chosen attribute */ |
---|
| 64 | private int m_attributeIndex; |
---|
| 65 | |
---|
| 66 | /** The slope */ |
---|
| 67 | private double m_slope; |
---|
| 68 | |
---|
| 69 | /** The intercept */ |
---|
| 70 | private double m_intercept; |
---|
| 71 | |
---|
| 72 | /** If true, suppress error message if no useful attribute was found*/ |
---|
| 73 | private boolean m_suppressErrorMessage = false; |
---|
| 74 | |
---|
| 75 | /** |
---|
| 76 | * Returns a string describing this classifier |
---|
| 77 | * @return a description of the classifier suitable for |
---|
| 78 | * displaying in the explorer/experimenter gui |
---|
| 79 | */ |
---|
| 80 | public String globalInfo() { |
---|
| 81 | return "Learns a simple linear regression model. " |
---|
| 82 | +"Picks the attribute that results in the lowest squared error. " |
---|
| 83 | +"Missing values are not allowed. Can only deal with numeric attributes."; |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | /** |
---|
| 87 | * Generate a prediction for the supplied instance. |
---|
| 88 | * |
---|
| 89 | * @param inst the instance to predict. |
---|
| 90 | * @return the prediction |
---|
| 91 | * @throws Exception if an error occurs |
---|
| 92 | */ |
---|
| 93 | public double classifyInstance(Instance inst) throws Exception { |
---|
| 94 | |
---|
| 95 | if (m_attribute == null) { |
---|
| 96 | return m_intercept; |
---|
| 97 | } else { |
---|
| 98 | if (inst.isMissing(m_attribute.index())) { |
---|
| 99 | throw new Exception("SimpleLinearRegression: No missing values!"); |
---|
| 100 | } |
---|
| 101 | return m_intercept + m_slope * inst.value(m_attribute.index()); |
---|
| 102 | } |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Returns default capabilities of the classifier. |
---|
| 107 | * |
---|
| 108 | * @return the capabilities of this classifier |
---|
| 109 | */ |
---|
| 110 | public Capabilities getCapabilities() { |
---|
| 111 | Capabilities result = super.getCapabilities(); |
---|
| 112 | result.disableAll(); |
---|
| 113 | |
---|
| 114 | // attributes |
---|
| 115 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 116 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 117 | |
---|
| 118 | // class |
---|
| 119 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 120 | result.enable(Capability.DATE_CLASS); |
---|
| 121 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 122 | |
---|
| 123 | return result; |
---|
| 124 | } |
---|
| 125 | |
---|
| 126 | /** |
---|
| 127 | * Builds a simple linear regression model given the supplied training data. |
---|
| 128 | * |
---|
| 129 | * @param insts the training data. |
---|
| 130 | * @throws Exception if an error occurs |
---|
| 131 | */ |
---|
| 132 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 133 | |
---|
| 134 | // can classifier handle the data? |
---|
| 135 | getCapabilities().testWithFail(insts); |
---|
| 136 | |
---|
| 137 | // remove instances with missing class |
---|
| 138 | insts = new Instances(insts); |
---|
| 139 | insts.deleteWithMissingClass(); |
---|
| 140 | |
---|
| 141 | // Compute mean of target value |
---|
| 142 | double yMean = insts.meanOrMode(insts.classIndex()); |
---|
| 143 | |
---|
| 144 | // Choose best attribute |
---|
| 145 | double minMsq = Double.MAX_VALUE; |
---|
| 146 | m_attribute = null; |
---|
| 147 | int chosen = -1; |
---|
| 148 | double chosenSlope = Double.NaN; |
---|
| 149 | double chosenIntercept = Double.NaN; |
---|
| 150 | for (int i = 0; i < insts.numAttributes(); i++) { |
---|
| 151 | if (i != insts.classIndex()) { |
---|
| 152 | m_attribute = insts.attribute(i); |
---|
| 153 | |
---|
| 154 | // Compute slope and intercept |
---|
| 155 | double xMean = insts.meanOrMode(i); |
---|
| 156 | double sumWeightedXDiffSquared = 0; |
---|
| 157 | double sumWeightedYDiffSquared = 0; |
---|
| 158 | m_slope = 0; |
---|
| 159 | for (int j = 0; j < insts.numInstances(); j++) { |
---|
| 160 | Instance inst = insts.instance(j); |
---|
| 161 | if (!inst.isMissing(i) && !inst.classIsMissing()) { |
---|
| 162 | double xDiff = inst.value(i) - xMean; |
---|
| 163 | double yDiff = inst.classValue() - yMean; |
---|
| 164 | double weightedXDiff = inst.weight() * xDiff; |
---|
| 165 | double weightedYDiff = inst.weight() * yDiff; |
---|
| 166 | m_slope += weightedXDiff * yDiff; |
---|
| 167 | sumWeightedXDiffSquared += weightedXDiff * xDiff; |
---|
| 168 | sumWeightedYDiffSquared += weightedYDiff * yDiff; |
---|
| 169 | } |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | // Skip attribute if not useful |
---|
| 173 | if (sumWeightedXDiffSquared == 0) { |
---|
| 174 | continue; |
---|
| 175 | } |
---|
| 176 | double numerator = m_slope; |
---|
| 177 | m_slope /= sumWeightedXDiffSquared; |
---|
| 178 | m_intercept = yMean - m_slope * xMean; |
---|
| 179 | |
---|
| 180 | // Compute sum of squared errors |
---|
| 181 | double msq = sumWeightedYDiffSquared - m_slope * numerator; |
---|
| 182 | |
---|
| 183 | // Check whether this is the best attribute |
---|
| 184 | if (msq < minMsq) { |
---|
| 185 | minMsq = msq; |
---|
| 186 | chosen = i; |
---|
| 187 | chosenSlope = m_slope; |
---|
| 188 | chosenIntercept = m_intercept; |
---|
| 189 | } |
---|
| 190 | } |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | // Set parameters |
---|
| 194 | if (chosen == -1) { |
---|
| 195 | if (!m_suppressErrorMessage) System.err.println("----- no useful attribute found"); |
---|
| 196 | m_attribute = null; |
---|
| 197 | m_attributeIndex = 0; |
---|
| 198 | m_slope = 0; |
---|
| 199 | m_intercept = yMean; |
---|
| 200 | } else { |
---|
| 201 | m_attribute = insts.attribute(chosen); |
---|
| 202 | m_attributeIndex = chosen; |
---|
| 203 | m_slope = chosenSlope; |
---|
| 204 | m_intercept = chosenIntercept; |
---|
| 205 | } |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | /** |
---|
| 209 | * Returns true if a usable attribute was found. |
---|
| 210 | * |
---|
| 211 | * @return true if a usable attribute was found. |
---|
| 212 | */ |
---|
| 213 | public boolean foundUsefulAttribute(){ |
---|
| 214 | return (m_attribute != null); |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /** |
---|
| 218 | * Returns the index of the attribute used in the regression. |
---|
| 219 | * |
---|
| 220 | * @return the index of the attribute. |
---|
| 221 | */ |
---|
| 222 | public int getAttributeIndex(){ |
---|
| 223 | return m_attributeIndex; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | /** |
---|
| 227 | * Returns the slope of the function. |
---|
| 228 | * |
---|
| 229 | * @return the slope. |
---|
| 230 | */ |
---|
| 231 | public double getSlope(){ |
---|
| 232 | return m_slope; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | /** |
---|
| 236 | * Returns the intercept of the function. |
---|
| 237 | * |
---|
| 238 | * @return the intercept. |
---|
| 239 | */ |
---|
| 240 | public double getIntercept(){ |
---|
| 241 | return m_intercept; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | /** |
---|
| 245 | * Turn off the error message that is reported when no useful attribute is found. |
---|
| 246 | * |
---|
| 247 | * @param s if set to true turns off the error message |
---|
| 248 | */ |
---|
| 249 | public void setSuppressErrorMessage(boolean s){ |
---|
| 250 | m_suppressErrorMessage = s; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Returns a description of this classifier as a string |
---|
| 255 | * |
---|
| 256 | * @return a description of the classifier. |
---|
| 257 | */ |
---|
| 258 | public String toString() { |
---|
| 259 | |
---|
| 260 | StringBuffer text = new StringBuffer(); |
---|
| 261 | if (m_attribute == null) { |
---|
| 262 | text.append("Predicting constant " + m_intercept); |
---|
| 263 | } else { |
---|
| 264 | text.append("Linear regression on " + m_attribute.name() + "\n\n"); |
---|
| 265 | text.append(Utils.doubleToString(m_slope,2) + " * " + |
---|
| 266 | m_attribute.name()); |
---|
| 267 | if (m_intercept > 0) { |
---|
| 268 | text.append(" + " + Utils.doubleToString(m_intercept, 2)); |
---|
| 269 | } else { |
---|
| 270 | text.append(" - " + Utils.doubleToString((-m_intercept), 2)); |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | text.append("\n"); |
---|
| 274 | return text.toString(); |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | /** |
---|
| 278 | * Returns the revision string. |
---|
| 279 | * |
---|
| 280 | * @return the revision |
---|
| 281 | */ |
---|
| 282 | public String getRevision() { |
---|
| 283 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | /** |
---|
| 287 | * Main method for testing this class |
---|
| 288 | * |
---|
| 289 | * @param argv options |
---|
| 290 | */ |
---|
| 291 | public static void main(String [] argv){ |
---|
| 292 | runClassifier(new SimpleLinearRegression(), argv); |
---|
| 293 | } |
---|
| 294 | } |
---|