[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * LibLINEAR.java |
---|
| 19 | * Copyright (C) Benedikt Waldvogel |
---|
| 20 | */ |
---|
| 21 | package weka.classifiers.functions; |
---|
| 22 | |
---|
| 23 | import java.lang.reflect.Array; |
---|
| 24 | import java.lang.reflect.Constructor; |
---|
| 25 | import java.lang.reflect.Field; |
---|
| 26 | import java.lang.reflect.Method; |
---|
| 27 | import java.util.ArrayList; |
---|
| 28 | import java.util.Enumeration; |
---|
| 29 | import java.util.List; |
---|
| 30 | import java.util.StringTokenizer; |
---|
| 31 | import java.util.Vector; |
---|
| 32 | |
---|
| 33 | import weka.classifiers.Classifier; |
---|
| 34 | import weka.classifiers.AbstractClassifier; |
---|
| 35 | import weka.core.Capabilities; |
---|
| 36 | import weka.core.Instance; |
---|
| 37 | import weka.core.Instances; |
---|
| 38 | import weka.core.Option; |
---|
| 39 | import weka.core.RevisionUtils; |
---|
| 40 | import weka.core.SelectedTag; |
---|
| 41 | import weka.core.Tag; |
---|
| 42 | import weka.core.TechnicalInformation; |
---|
| 43 | import weka.core.TechnicalInformationHandler; |
---|
| 44 | import weka.core.Utils; |
---|
| 45 | import weka.core.WekaException; |
---|
| 46 | import weka.core.Capabilities.Capability; |
---|
| 47 | import weka.core.TechnicalInformation.Type; |
---|
| 48 | import weka.filters.Filter; |
---|
| 49 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
| 50 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 51 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 52 | |
---|
| 53 | /** |
---|
| 54 | <!-- globalinfo-start --> |
---|
| 55 | * A wrapper class for the liblinear tools (the liblinear classes, typically the jar file, need to be in the classpath to use this classifier).<br/> |
---|
| 56 | * Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin (2008). LIBLINEAR - A Library for Large Linear Classification. URL http://www.csie.ntu.edu.tw/~cjlin/liblinear/. |
---|
| 57 | * <p/> |
---|
| 58 | <!-- globalinfo-end --> |
---|
| 59 | * |
---|
| 60 | <!-- technical-bibtex-start --> |
---|
| 61 | * BibTeX: |
---|
| 62 | * <pre> |
---|
| 63 | * @misc{Fan2008, |
---|
| 64 | * author = {Rong-En Fan and Kai-Wei Chang and Cho-Jui Hsieh and Xiang-Rui Wang and Chih-Jen Lin}, |
---|
| 65 | * note = {The Weka classifier works with version 1.33 of LIBLINEAR}, |
---|
| 66 | * title = {LIBLINEAR - A Library for Large Linear Classification}, |
---|
| 67 | * year = {2008}, |
---|
| 68 | * URL = {http://www.csie.ntu.edu.tw/\~cjlin/liblinear/} |
---|
| 69 | * } |
---|
| 70 | * </pre> |
---|
| 71 | * <p/> |
---|
| 72 | <!-- technical-bibtex-end --> |
---|
| 73 | * |
---|
| 74 | <!-- options-start --> |
---|
| 75 | * Valid options are: <p/> |
---|
| 76 | * |
---|
| 77 | * <pre> -S <int> |
---|
| 78 | * Set type of solver (default: 1) |
---|
| 79 | * 0 = L2-regularized logistic regression |
---|
| 80 | * 1 = L2-loss support vector machines (dual) |
---|
| 81 | * 2 = L2-loss support vector machines (primal) |
---|
| 82 | * 3 = L1-loss support vector machines (dual) |
---|
| 83 | * 4 = multi-class support vector machines by Crammer and Singer</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -C <double> |
---|
| 86 | * Set the cost parameter C |
---|
| 87 | * (default: 1)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -Z |
---|
| 90 | * Turn on normalization of input data (default: off)</pre> |
---|
| 91 | * |
---|
| 92 | * <pre> -N |
---|
| 93 | * Turn on nominal to binary conversion.</pre> |
---|
| 94 | * |
---|
| 95 | * <pre> -M |
---|
| 96 | * Turn off missing value replacement. |
---|
| 97 | * WARNING: use only if your data has no missing values.</pre> |
---|
| 98 | * |
---|
| 99 | * <pre> -P |
---|
| 100 | * Use probability estimation (default: off) |
---|
| 101 | * currently for L2-regularized logistic regression only! </pre> |
---|
| 102 | * |
---|
| 103 | * <pre> -E <double> |
---|
| 104 | * Set tolerance of termination criterion (default: 0.01)</pre> |
---|
| 105 | * |
---|
| 106 | * <pre> -W <double> |
---|
| 107 | * Set the parameters C of class i to weight[i]*C |
---|
| 108 | * (default: 1)</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -B <double> |
---|
| 111 | * Add Bias term with the given value if >= 0; if < 0, no bias term added (default: 1)</pre> |
---|
| 112 | * |
---|
| 113 | * <pre> -D |
---|
| 114 | * If set, classifier is run in debug mode and |
---|
| 115 | * may output additional info to the console</pre> |
---|
| 116 | * |
---|
| 117 | <!-- options-end --> |
---|
| 118 | * |
---|
| 119 | * @author Benedikt Waldvogel (mail at bwaldvogel.de) |
---|
| 120 | * @version $Revision: 5928 $ |
---|
| 121 | */ |
---|
| 122 | public class LibLINEAR |
---|
| 123 | extends AbstractClassifier |
---|
| 124 | implements TechnicalInformationHandler { |
---|
| 125 | |
---|
| 126 | /** the svm classname */ |
---|
| 127 | protected final static String CLASS_LINEAR = "liblinear.Linear"; |
---|
| 128 | |
---|
| 129 | /** the svm_model classname */ |
---|
| 130 | protected final static String CLASS_MODEL = "liblinear.Model"; |
---|
| 131 | |
---|
| 132 | /** the svm_problem classname */ |
---|
| 133 | protected final static String CLASS_PROBLEM = "liblinear.Problem"; |
---|
| 134 | |
---|
| 135 | /** the svm_parameter classname */ |
---|
| 136 | protected final static String CLASS_PARAMETER = "liblinear.Parameter"; |
---|
| 137 | |
---|
| 138 | /** the svm_parameter classname */ |
---|
| 139 | protected final static String CLASS_SOLVERTYPE = "liblinear.SolverType"; |
---|
| 140 | |
---|
| 141 | /** the svm_node classname */ |
---|
| 142 | protected final static String CLASS_FEATURENODE = "liblinear.FeatureNode"; |
---|
| 143 | |
---|
| 144 | /** serial UID */ |
---|
| 145 | protected static final long serialVersionUID = 230504711; |
---|
| 146 | |
---|
| 147 | /** LibLINEAR Model */ |
---|
| 148 | protected Object m_Model; |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | public Object getModel() { |
---|
| 152 | return m_Model; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /** for normalizing the data */ |
---|
| 156 | protected Filter m_Filter = null; |
---|
| 157 | |
---|
| 158 | /** normalize input data */ |
---|
| 159 | protected boolean m_Normalize = false; |
---|
| 160 | |
---|
| 161 | /** SVM solver type L2-regularized logistic regression */ |
---|
| 162 | public static final int SVMTYPE_L2_LR = 0; |
---|
| 163 | /** SVM solver type L2-loss support vector machines (dual) */ |
---|
| 164 | public static final int SVMTYPE_L2LOSS_SVM_DUAL = 1; |
---|
| 165 | /** SVM solver type L2-loss support vector machines (primal) */ |
---|
| 166 | public static final int SVMTYPE_L2LOSS_SVM = 2; |
---|
| 167 | /** SVM solver type L1-loss support vector machines (dual) */ |
---|
| 168 | public static final int SVMTYPE_L1LOSS_SVM_DUAL = 3; |
---|
| 169 | /** SVM solver type multi-class support vector machines by Crammer and Singer */ |
---|
| 170 | public static final int SVMTYPE_MCSVM_CS = 4; |
---|
| 171 | /** SVM solver types */ |
---|
| 172 | public static final Tag[] TAGS_SVMTYPE = { |
---|
| 173 | new Tag(SVMTYPE_L2_LR, "L2-regularized logistic regression"), |
---|
| 174 | new Tag(SVMTYPE_L2LOSS_SVM_DUAL, "L2-loss support vector machines (dual)"), |
---|
| 175 | new Tag(SVMTYPE_L2LOSS_SVM, "L2-loss support vector machines (primal)"), |
---|
| 176 | new Tag(SVMTYPE_L1LOSS_SVM_DUAL, "L1-loss support vector machines (dual)"), |
---|
| 177 | new Tag(SVMTYPE_MCSVM_CS, "multi-class support vector machines by Crammer and Singer") |
---|
| 178 | }; |
---|
| 179 | |
---|
| 180 | /** the SVM solver type */ |
---|
| 181 | protected int m_SVMType = SVMTYPE_L2LOSS_SVM_DUAL; |
---|
| 182 | |
---|
| 183 | /** stopping criteria */ |
---|
| 184 | protected double m_eps = 0.01; |
---|
| 185 | |
---|
| 186 | /** cost Parameter C */ |
---|
| 187 | protected double m_Cost = 1; |
---|
| 188 | |
---|
| 189 | /** bias term value */ |
---|
| 190 | protected double m_Bias = 1; |
---|
| 191 | |
---|
| 192 | protected int[] m_WeightLabel = new int[0]; |
---|
| 193 | |
---|
| 194 | protected double[] m_Weight = new double[0]; |
---|
| 195 | |
---|
| 196 | /** whether to generate probability estimates instead of +1/-1 in case of |
---|
| 197 | * classification problems */ |
---|
| 198 | protected boolean m_ProbabilityEstimates = false; |
---|
| 199 | |
---|
| 200 | /** The filter used to get rid of missing values. */ |
---|
| 201 | protected ReplaceMissingValues m_ReplaceMissingValues; |
---|
| 202 | |
---|
| 203 | /** The filter used to make attributes numeric. */ |
---|
| 204 | protected NominalToBinary m_NominalToBinary; |
---|
| 205 | |
---|
| 206 | /** If true, the nominal to binary filter is applied */ |
---|
| 207 | private boolean m_nominalToBinary = false; |
---|
| 208 | |
---|
| 209 | /** If true, the replace missing values filter is not applied */ |
---|
| 210 | private boolean m_noReplaceMissingValues; |
---|
| 211 | |
---|
| 212 | /** whether the liblinear classes are in the Classpath */ |
---|
| 213 | protected static boolean m_Present = false; |
---|
| 214 | static { |
---|
| 215 | try { |
---|
| 216 | Class.forName(CLASS_LINEAR); |
---|
| 217 | m_Present = true; |
---|
| 218 | } |
---|
| 219 | catch (Exception e) { |
---|
| 220 | m_Present = false; |
---|
| 221 | } |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | /** |
---|
| 225 | * Returns a string describing classifier |
---|
| 226 | * |
---|
| 227 | * @return a description suitable for displaying in the |
---|
| 228 | * explorer/experimenter gui |
---|
| 229 | */ |
---|
| 230 | public String globalInfo() { |
---|
| 231 | return |
---|
| 232 | "A wrapper class for the liblinear tools (the liblinear classes, typically " |
---|
| 233 | + "the jar file, need to be in the classpath to use this classifier).\n" |
---|
| 234 | + getTechnicalInformation().toString(); |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /** |
---|
| 238 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 239 | * detailed information about the technical background of this class, |
---|
| 240 | * e.g., paper reference or book this class is based on. |
---|
| 241 | * |
---|
| 242 | * @return the technical information about this class |
---|
| 243 | */ |
---|
| 244 | public TechnicalInformation getTechnicalInformation() { |
---|
| 245 | TechnicalInformation result; |
---|
| 246 | |
---|
| 247 | result = new TechnicalInformation(Type.MISC); |
---|
| 248 | result.setValue(TechnicalInformation.Field.AUTHOR, "Rong-En Fan and Kai-Wei Chang and Cho-Jui Hsieh and Xiang-Rui Wang and Chih-Jen Lin"); |
---|
| 249 | result.setValue(TechnicalInformation.Field.TITLE, "LIBLINEAR - A Library for Large Linear Classification"); |
---|
| 250 | result.setValue(TechnicalInformation.Field.YEAR, "2008"); |
---|
| 251 | result.setValue(TechnicalInformation.Field.URL, "http://www.csie.ntu.edu.tw/~cjlin/liblinear/"); |
---|
| 252 | result.setValue(TechnicalInformation.Field.NOTE, "The Weka classifier works with version 1.33 of LIBLINEAR"); |
---|
| 253 | |
---|
| 254 | return result; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /** |
---|
| 258 | * Returns an enumeration describing the available options. |
---|
| 259 | * |
---|
| 260 | * @return an enumeration of all the available options. |
---|
| 261 | */ |
---|
| 262 | public Enumeration listOptions() { |
---|
| 263 | Vector result; |
---|
| 264 | |
---|
| 265 | result = new Vector(); |
---|
| 266 | |
---|
| 267 | result.addElement( |
---|
| 268 | new Option( |
---|
| 269 | "\tSet type of solver (default: 1)\n" |
---|
| 270 | + "\t\t 0 = L2-regularized logistic regression\n" |
---|
| 271 | + "\t\t 1 = L2-loss support vector machines (dual)\n" |
---|
| 272 | + "\t\t 2 = L2-loss support vector machines (primal)\n" |
---|
| 273 | + "\t\t 3 = L1-loss support vector machines (dual)\n" |
---|
| 274 | + "\t\t 4 = multi-class support vector machines by Crammer and Singer", |
---|
| 275 | "S", 1, "-S <int>")); |
---|
| 276 | |
---|
| 277 | result.addElement( |
---|
| 278 | new Option( |
---|
| 279 | "\tSet the cost parameter C\n" |
---|
| 280 | + "\t (default: 1)", |
---|
| 281 | "C", 1, "-C <double>")); |
---|
| 282 | |
---|
| 283 | result.addElement( |
---|
| 284 | new Option( |
---|
| 285 | "\tTurn on normalization of input data (default: off)", |
---|
| 286 | "Z", 0, "-Z")); |
---|
| 287 | |
---|
| 288 | result.addElement( |
---|
| 289 | new Option("\tTurn on nominal to binary conversion.", |
---|
| 290 | "N", 0, "-N")); |
---|
| 291 | |
---|
| 292 | result.addElement( |
---|
| 293 | new Option("\tTurn off missing value replacement." |
---|
| 294 | + "\n\tWARNING: use only if your data has no missing " |
---|
| 295 | + "values.", "M", 0, "-M")); |
---|
| 296 | |
---|
| 297 | result.addElement( |
---|
| 298 | new Option( |
---|
| 299 | "\tUse probability estimation (default: off)\n" + |
---|
| 300 | "currently for L2-regularized logistic regression only! ", |
---|
| 301 | "P", 0, "-P")); |
---|
| 302 | |
---|
| 303 | result.addElement( |
---|
| 304 | new Option( |
---|
| 305 | "\tSet tolerance of termination criterion (default: 0.01)", |
---|
| 306 | "E", 1, "-E <double>")); |
---|
| 307 | |
---|
| 308 | result.addElement( |
---|
| 309 | new Option( |
---|
| 310 | "\tSet the parameters C of class i to weight[i]*C\n" |
---|
| 311 | + "\t (default: 1)", |
---|
| 312 | "W", 1, "-W <double>")); |
---|
| 313 | |
---|
| 314 | result.addElement( |
---|
| 315 | new Option( |
---|
| 316 | "\tAdd Bias term with the given value if >= 0; if < 0, no bias term added (default: 1)", |
---|
| 317 | "B", 1, "-B <double>")); |
---|
| 318 | |
---|
| 319 | Enumeration en = super.listOptions(); |
---|
| 320 | while (en.hasMoreElements()) |
---|
| 321 | result.addElement(en.nextElement()); |
---|
| 322 | |
---|
| 323 | return result.elements(); |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | /** |
---|
| 327 | * Sets the classifier options <p/> |
---|
| 328 | * |
---|
| 329 | <!-- options-start --> |
---|
| 330 | * Valid options are: <p/> |
---|
| 331 | * |
---|
| 332 | * <pre> -S <int> |
---|
| 333 | * Set type of solver (default: 1) |
---|
| 334 | * 0 = L2-regularized logistic regression |
---|
| 335 | * 1 = L2-loss support vector machines (dual) |
---|
| 336 | * 2 = L2-loss support vector machines (primal) |
---|
| 337 | * 3 = L1-loss support vector machines (dual) |
---|
| 338 | * 4 = multi-class support vector machines by Crammer and Singer</pre> |
---|
| 339 | * |
---|
| 340 | * <pre> -C <double> |
---|
| 341 | * Set the cost parameter C |
---|
| 342 | * (default: 1)</pre> |
---|
| 343 | * |
---|
| 344 | * <pre> -Z |
---|
| 345 | * Turn on normalization of input data (default: off)</pre> |
---|
| 346 | * |
---|
| 347 | * <pre> -N |
---|
| 348 | * Turn on nominal to binary conversion.</pre> |
---|
| 349 | * |
---|
| 350 | * <pre> -M |
---|
| 351 | * Turn off missing value replacement. |
---|
| 352 | * WARNING: use only if your data has no missing values.</pre> |
---|
| 353 | * |
---|
| 354 | * <pre> -P |
---|
| 355 | * Use probability estimation (default: off) |
---|
| 356 | * currently for L2-regularized logistic regression only! </pre> |
---|
| 357 | * |
---|
| 358 | * <pre> -E <double> |
---|
| 359 | * Set tolerance of termination criterion (default: 0.01)</pre> |
---|
| 360 | * |
---|
| 361 | * <pre> -W <double> |
---|
| 362 | * Set the parameters C of class i to weight[i]*C |
---|
| 363 | * (default: 1)</pre> |
---|
| 364 | * |
---|
| 365 | * <pre> -B <double> |
---|
| 366 | * Add Bias term with the given value if >= 0; if < 0, no bias term added (default: 1)</pre> |
---|
| 367 | * |
---|
| 368 | * <pre> -D |
---|
| 369 | * If set, classifier is run in debug mode and |
---|
| 370 | * may output additional info to the console</pre> |
---|
| 371 | * |
---|
| 372 | <!-- options-end --> |
---|
| 373 | * |
---|
| 374 | * @param options the options to parse |
---|
| 375 | * @throws Exception if parsing fails |
---|
| 376 | */ |
---|
| 377 | public void setOptions(String[] options) throws Exception { |
---|
| 378 | String tmpStr; |
---|
| 379 | |
---|
| 380 | tmpStr = Utils.getOption('S', options); |
---|
| 381 | if (tmpStr.length() != 0) |
---|
| 382 | setSVMType( |
---|
| 383 | new SelectedTag(Integer.parseInt(tmpStr), TAGS_SVMTYPE)); |
---|
| 384 | else |
---|
| 385 | setSVMType( |
---|
| 386 | new SelectedTag(SVMTYPE_L2LOSS_SVM_DUAL, TAGS_SVMTYPE)); |
---|
| 387 | |
---|
| 388 | tmpStr = Utils.getOption('C', options); |
---|
| 389 | if (tmpStr.length() != 0) |
---|
| 390 | setCost(Double.parseDouble(tmpStr)); |
---|
| 391 | else |
---|
| 392 | setCost(1); |
---|
| 393 | |
---|
| 394 | tmpStr = Utils.getOption('E', options); |
---|
| 395 | if (tmpStr.length() != 0) |
---|
| 396 | setEps(Double.parseDouble(tmpStr)); |
---|
| 397 | else |
---|
| 398 | setEps(1e-3); |
---|
| 399 | |
---|
| 400 | setNormalize(Utils.getFlag('Z', options)); |
---|
| 401 | |
---|
| 402 | setConvertNominalToBinary(Utils.getFlag('N', options)); |
---|
| 403 | setDoNotReplaceMissingValues(Utils.getFlag('M', options)); |
---|
| 404 | |
---|
| 405 | tmpStr = Utils.getOption('B', options); |
---|
| 406 | if (tmpStr.length() != 0) |
---|
| 407 | setBias(Double.parseDouble(tmpStr)); |
---|
| 408 | else |
---|
| 409 | setBias(1); |
---|
| 410 | |
---|
| 411 | setWeights(Utils.getOption('W', options)); |
---|
| 412 | |
---|
| 413 | setProbabilityEstimates(Utils.getFlag('P', options)); |
---|
| 414 | |
---|
| 415 | super.setOptions(options); |
---|
| 416 | } |
---|
| 417 | |
---|
| 418 | /** |
---|
| 419 | * Returns the current options |
---|
| 420 | * |
---|
| 421 | * @return the current setup |
---|
| 422 | */ |
---|
| 423 | public String[] getOptions() { |
---|
| 424 | Vector result; |
---|
| 425 | |
---|
| 426 | result = new Vector(); |
---|
| 427 | |
---|
| 428 | result.add("-S"); |
---|
| 429 | result.add("" + m_SVMType); |
---|
| 430 | |
---|
| 431 | result.add("-C"); |
---|
| 432 | result.add("" + getCost()); |
---|
| 433 | |
---|
| 434 | result.add("-E"); |
---|
| 435 | result.add("" + getEps()); |
---|
| 436 | |
---|
| 437 | result.add("-B"); |
---|
| 438 | result.add("" + getBias()); |
---|
| 439 | |
---|
| 440 | if (getNormalize()) |
---|
| 441 | result.add("-Z"); |
---|
| 442 | |
---|
| 443 | if (getConvertNominalToBinary()) |
---|
| 444 | result.add("-N"); |
---|
| 445 | |
---|
| 446 | if (getDoNotReplaceMissingValues()) |
---|
| 447 | result.add("-M"); |
---|
| 448 | |
---|
| 449 | if (getWeights().length() != 0) { |
---|
| 450 | result.add("-W"); |
---|
| 451 | result.add("" + getWeights()); |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | if (getProbabilityEstimates()) |
---|
| 455 | result.add("-P"); |
---|
| 456 | |
---|
| 457 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | /** |
---|
| 461 | * returns whether the liblinear classes are present or not, i.e. whether the |
---|
| 462 | * classes are in the classpath or not |
---|
| 463 | * |
---|
| 464 | * @return whether the liblinear classes are available |
---|
| 465 | */ |
---|
| 466 | public static boolean isPresent() { |
---|
| 467 | return m_Present; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | /** |
---|
| 471 | * Sets type of SVM (default SVMTYPE_L2) |
---|
| 472 | * |
---|
| 473 | * @param value the type of the SVM |
---|
| 474 | */ |
---|
| 475 | public void setSVMType(SelectedTag value) { |
---|
| 476 | if (value.getTags() == TAGS_SVMTYPE) |
---|
| 477 | m_SVMType = value.getSelectedTag().getID(); |
---|
| 478 | } |
---|
| 479 | |
---|
| 480 | /** |
---|
| 481 | * Gets type of SVM |
---|
| 482 | * |
---|
| 483 | * @return the type of the SVM |
---|
| 484 | */ |
---|
| 485 | public SelectedTag getSVMType() { |
---|
| 486 | return new SelectedTag(m_SVMType, TAGS_SVMTYPE); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | /** |
---|
| 490 | * Returns the tip text for this property |
---|
| 491 | * |
---|
| 492 | * @return tip text for this property suitable for |
---|
| 493 | * displaying in the explorer/experimenter gui |
---|
| 494 | */ |
---|
| 495 | public String SVMTypeTipText() { |
---|
| 496 | return "The type of SVM to use."; |
---|
| 497 | } |
---|
| 498 | |
---|
| 499 | /** |
---|
| 500 | * Sets the cost parameter C (default 1) |
---|
| 501 | * |
---|
| 502 | * @param value the cost value |
---|
| 503 | */ |
---|
| 504 | public void setCost(double value) { |
---|
| 505 | m_Cost = value; |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | /** |
---|
| 509 | * Returns the cost parameter C |
---|
| 510 | * |
---|
| 511 | * @return the cost value |
---|
| 512 | */ |
---|
| 513 | public double getCost() { |
---|
| 514 | return m_Cost; |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | /** |
---|
| 518 | * Returns the tip text for this property |
---|
| 519 | * |
---|
| 520 | * @return tip text for this property suitable for |
---|
| 521 | * displaying in the explorer/experimenter gui |
---|
| 522 | */ |
---|
| 523 | public String costTipText() { |
---|
| 524 | return "The cost parameter C."; |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | /** |
---|
| 528 | * Sets tolerance of termination criterion (default 0.001) |
---|
| 529 | * |
---|
| 530 | * @param value the tolerance |
---|
| 531 | */ |
---|
| 532 | public void setEps(double value) { |
---|
| 533 | m_eps = value; |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * Gets tolerance of termination criterion |
---|
| 538 | * |
---|
| 539 | * @return the current tolerance |
---|
| 540 | */ |
---|
| 541 | public double getEps() { |
---|
| 542 | return m_eps; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | /** |
---|
| 546 | * Returns the tip text for this property |
---|
| 547 | * |
---|
| 548 | * @return tip text for this property suitable for |
---|
| 549 | * displaying in the explorer/experimenter gui |
---|
| 550 | */ |
---|
| 551 | public String epsTipText() { |
---|
| 552 | return "The tolerance of the termination criterion."; |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Sets bias term value (default 1) |
---|
| 557 | * No bias term is added if value < 0 |
---|
| 558 | * |
---|
| 559 | * @param value the bias term value |
---|
| 560 | */ |
---|
| 561 | public void setBias(double value) { |
---|
| 562 | m_Bias = value; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * Returns bias term value (default 1) |
---|
| 567 | * No bias term is added if value < 0 |
---|
| 568 | * |
---|
| 569 | * @return the bias term value |
---|
| 570 | */ |
---|
| 571 | public double getBias() { |
---|
| 572 | return m_Bias; |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | /** |
---|
| 576 | * Returns the tip text for this property |
---|
| 577 | * |
---|
| 578 | * @return tip text for this property suitable for |
---|
| 579 | * displaying in the explorer/experimenter gui |
---|
| 580 | */ |
---|
| 581 | public String biasTipText() { |
---|
| 582 | return "If >= 0, a bias term with that value is added; " + |
---|
| 583 | "otherwise (<0) no bias term is added (default: 1)."; |
---|
| 584 | } |
---|
| 585 | |
---|
| 586 | /** |
---|
| 587 | * Returns the tip text for this property |
---|
| 588 | * |
---|
| 589 | * @return tip text for this property suitable for |
---|
| 590 | * displaying in the explorer/experimenter gui |
---|
| 591 | */ |
---|
| 592 | public String normalizeTipText() { |
---|
| 593 | return "Whether to normalize the data."; |
---|
| 594 | } |
---|
| 595 | |
---|
| 596 | /** |
---|
| 597 | * whether to normalize input data |
---|
| 598 | * |
---|
| 599 | * @param value whether to normalize the data |
---|
| 600 | */ |
---|
| 601 | public void setNormalize(boolean value) { |
---|
| 602 | m_Normalize = value; |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | /** |
---|
| 606 | * whether to normalize input data |
---|
| 607 | * |
---|
| 608 | * @return true, if the data is normalized |
---|
| 609 | */ |
---|
| 610 | public boolean getNormalize() { |
---|
| 611 | return m_Normalize; |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | /** |
---|
| 615 | * Returns the tip text for this property |
---|
| 616 | * |
---|
| 617 | * @return tip text for this property suitable for |
---|
| 618 | * displaying in the explorer/experimenter gui |
---|
| 619 | */ |
---|
| 620 | public String convertNominalToBinaryTipText() { |
---|
| 621 | return "Whether to turn on conversion of nominal attributes " |
---|
| 622 | + "to binary."; |
---|
| 623 | } |
---|
| 624 | |
---|
| 625 | /** |
---|
| 626 | * Whether to turn on conversion of nominal attributes |
---|
| 627 | * to binary. |
---|
| 628 | * |
---|
| 629 | * @param b true if nominal to binary conversion is to be |
---|
| 630 | * turned on |
---|
| 631 | */ |
---|
| 632 | public void setConvertNominalToBinary(boolean b) { |
---|
| 633 | m_nominalToBinary = b; |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | /** |
---|
| 637 | * Gets whether conversion of nominal to binary is |
---|
| 638 | * turned on. |
---|
| 639 | * |
---|
| 640 | * @return true if nominal to binary conversion is turned |
---|
| 641 | * on. |
---|
| 642 | */ |
---|
| 643 | public boolean getConvertNominalToBinary() { |
---|
| 644 | return m_nominalToBinary; |
---|
| 645 | } |
---|
| 646 | |
---|
| 647 | /** |
---|
| 648 | * Returns the tip text for this property |
---|
| 649 | * |
---|
| 650 | * @return tip text for this property suitable for |
---|
| 651 | * displaying in the explorer/experimenter gui |
---|
| 652 | */ |
---|
| 653 | public String doNotReplaceMissingValuesTipText() { |
---|
| 654 | return "Whether to turn off automatic replacement of missing " |
---|
| 655 | + "values. WARNING: set to true only if the data does not " |
---|
| 656 | + "contain missing values."; |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | /** |
---|
| 660 | * Whether to turn off automatic replacement of missing values. |
---|
| 661 | * Set to true only if the data does not contain missing values. |
---|
| 662 | * |
---|
| 663 | * @param b true if automatic missing values replacement is |
---|
| 664 | * to be disabled. |
---|
| 665 | */ |
---|
| 666 | public void setDoNotReplaceMissingValues(boolean b) { |
---|
| 667 | m_noReplaceMissingValues = b; |
---|
| 668 | } |
---|
| 669 | |
---|
| 670 | /** |
---|
| 671 | * Gets whether automatic replacement of missing values is |
---|
| 672 | * disabled. |
---|
| 673 | * |
---|
| 674 | * @return true if automatic replacement of missing values |
---|
| 675 | * is disabled. |
---|
| 676 | */ |
---|
| 677 | public boolean getDoNotReplaceMissingValues() { |
---|
| 678 | return m_noReplaceMissingValues; |
---|
| 679 | } |
---|
| 680 | |
---|
| 681 | /** |
---|
| 682 | * Sets the parameters C of class i to weight[i]*C (default 1). |
---|
| 683 | * Blank separated list of doubles. |
---|
| 684 | * |
---|
| 685 | * @param weightsStr the weights (doubles, separated by blanks) |
---|
| 686 | */ |
---|
| 687 | public void setWeights(String weightsStr) { |
---|
| 688 | StringTokenizer tok; |
---|
| 689 | int i; |
---|
| 690 | |
---|
| 691 | tok = new StringTokenizer(weightsStr, " "); |
---|
| 692 | m_Weight = new double[tok.countTokens()]; |
---|
| 693 | m_WeightLabel = new int[tok.countTokens()]; |
---|
| 694 | |
---|
| 695 | if (m_Weight.length == 0) |
---|
| 696 | System.out.println( |
---|
| 697 | "Zero Weights processed. Default weights will be used"); |
---|
| 698 | |
---|
| 699 | for (i = 0; i < m_Weight.length; i++) { |
---|
| 700 | m_Weight[i] = Double.parseDouble(tok.nextToken()); |
---|
| 701 | m_WeightLabel[i] = i; |
---|
| 702 | } |
---|
| 703 | } |
---|
| 704 | |
---|
| 705 | /** |
---|
| 706 | * Gets the parameters C of class i to weight[i]*C (default 1). |
---|
| 707 | * Blank separated doubles. |
---|
| 708 | * |
---|
| 709 | * @return the weights (doubles separated by blanks) |
---|
| 710 | */ |
---|
| 711 | public String getWeights() { |
---|
| 712 | String result; |
---|
| 713 | int i; |
---|
| 714 | |
---|
| 715 | result = ""; |
---|
| 716 | for (i = 0; i < m_Weight.length; i++) { |
---|
| 717 | if (i > 0) |
---|
| 718 | result += " "; |
---|
| 719 | result += Double.toString(m_Weight[i]); |
---|
| 720 | } |
---|
| 721 | |
---|
| 722 | return result; |
---|
| 723 | } |
---|
| 724 | |
---|
| 725 | /** |
---|
| 726 | * Returns the tip text for this property |
---|
| 727 | * |
---|
| 728 | * @return tip text for this property suitable for |
---|
| 729 | * displaying in the explorer/experimenter gui |
---|
| 730 | */ |
---|
| 731 | public String weightsTipText() { |
---|
| 732 | return "The weights to use for the classes, if empty 1 is used by default."; |
---|
| 733 | } |
---|
| 734 | |
---|
| 735 | /** |
---|
| 736 | * Returns whether probability estimates are generated instead of -1/+1 for |
---|
| 737 | * classification problems. |
---|
| 738 | * |
---|
| 739 | * @param value whether to predict probabilities |
---|
| 740 | */ |
---|
| 741 | public void setProbabilityEstimates(boolean value) { |
---|
| 742 | m_ProbabilityEstimates = value; |
---|
| 743 | } |
---|
| 744 | |
---|
| 745 | /** |
---|
| 746 | * Sets whether to generate probability estimates instead of -1/+1 for |
---|
| 747 | * classification problems. |
---|
| 748 | * |
---|
| 749 | * @return true, if probability estimates should be returned |
---|
| 750 | */ |
---|
| 751 | public boolean getProbabilityEstimates() { |
---|
| 752 | return m_ProbabilityEstimates; |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /** |
---|
| 756 | * Returns the tip text for this property |
---|
| 757 | * |
---|
| 758 | * @return tip text for this property suitable for |
---|
| 759 | * displaying in the explorer/experimenter gui |
---|
| 760 | */ |
---|
| 761 | public String probabilityEstimatesTipText() { |
---|
| 762 | return "Whether to generate probability estimates instead of -1/+1 for classification problems " + |
---|
| 763 | "(currently for L2-regularized logistic regression only!)"; |
---|
| 764 | } |
---|
| 765 | |
---|
| 766 | /** |
---|
| 767 | * sets the specified field |
---|
| 768 | * |
---|
| 769 | * @param o the object to set the field for |
---|
| 770 | * @param name the name of the field |
---|
| 771 | * @param value the new value of the field |
---|
| 772 | */ |
---|
| 773 | protected void setField(Object o, String name, Object value) { |
---|
| 774 | Field f; |
---|
| 775 | |
---|
| 776 | try { |
---|
| 777 | f = o.getClass().getField(name); |
---|
| 778 | f.set(o, value); |
---|
| 779 | } |
---|
| 780 | catch (Exception e) { |
---|
| 781 | e.printStackTrace(); |
---|
| 782 | } |
---|
| 783 | } |
---|
| 784 | |
---|
| 785 | /** |
---|
| 786 | * sets the specified field in an array |
---|
| 787 | * |
---|
| 788 | * @param o the object to set the field for |
---|
| 789 | * @param name the name of the field |
---|
| 790 | * @param index the index in the array |
---|
| 791 | * @param value the new value of the field |
---|
| 792 | */ |
---|
| 793 | protected void setField(Object o, String name, int index, Object value) { |
---|
| 794 | Field f; |
---|
| 795 | |
---|
| 796 | try { |
---|
| 797 | f = o.getClass().getField(name); |
---|
| 798 | Array.set(f.get(o), index, value); |
---|
| 799 | } |
---|
| 800 | catch (Exception e) { |
---|
| 801 | e.printStackTrace(); |
---|
| 802 | } |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | /** |
---|
| 806 | * returns the current value of the specified field |
---|
| 807 | * |
---|
| 808 | * @param o the object the field is member of |
---|
| 809 | * @param name the name of the field |
---|
| 810 | * @return the value |
---|
| 811 | */ |
---|
| 812 | protected Object getField(Object o, String name) { |
---|
| 813 | Field f; |
---|
| 814 | Object result; |
---|
| 815 | |
---|
| 816 | try { |
---|
| 817 | f = o.getClass().getField(name); |
---|
| 818 | result = f.get(o); |
---|
| 819 | } |
---|
| 820 | catch (Exception e) { |
---|
| 821 | e.printStackTrace(); |
---|
| 822 | result = null; |
---|
| 823 | } |
---|
| 824 | |
---|
| 825 | return result; |
---|
| 826 | } |
---|
| 827 | |
---|
| 828 | /** |
---|
| 829 | * sets a new array for the field |
---|
| 830 | * |
---|
| 831 | * @param o the object to set the array for |
---|
| 832 | * @param name the name of the field |
---|
| 833 | * @param type the type of the array |
---|
| 834 | * @param length the length of the one-dimensional array |
---|
| 835 | */ |
---|
| 836 | protected void newArray(Object o, String name, Class type, int length) { |
---|
| 837 | newArray(o, name, type, new int[]{length}); |
---|
| 838 | } |
---|
| 839 | |
---|
| 840 | /** |
---|
| 841 | * sets a new array for the field |
---|
| 842 | * |
---|
| 843 | * @param o the object to set the array for |
---|
| 844 | * @param name the name of the field |
---|
| 845 | * @param type the type of the array |
---|
| 846 | * @param dimensions the dimensions of the array |
---|
| 847 | */ |
---|
| 848 | protected void newArray(Object o, String name, Class type, int[] dimensions) { |
---|
| 849 | Field f; |
---|
| 850 | |
---|
| 851 | try { |
---|
| 852 | f = o.getClass().getField(name); |
---|
| 853 | f.set(o, Array.newInstance(type, dimensions)); |
---|
| 854 | } |
---|
| 855 | catch (Exception e) { |
---|
| 856 | e.printStackTrace(); |
---|
| 857 | } |
---|
| 858 | } |
---|
| 859 | |
---|
| 860 | /** |
---|
| 861 | * executes the specified method and returns the result, if any |
---|
| 862 | * |
---|
| 863 | * @param o the object the method should be called from |
---|
| 864 | * @param name the name of the method |
---|
| 865 | * @param paramClasses the classes of the parameters |
---|
| 866 | * @param paramValues the values of the parameters |
---|
| 867 | * @return the return value of the method, if any (in that case null) |
---|
| 868 | */ |
---|
| 869 | protected Object invokeMethod(Object o, String name, Class[] paramClasses, Object[] paramValues) { |
---|
| 870 | Method m; |
---|
| 871 | Object result; |
---|
| 872 | |
---|
| 873 | result = null; |
---|
| 874 | |
---|
| 875 | try { |
---|
| 876 | m = o.getClass().getMethod(name, paramClasses); |
---|
| 877 | result = m.invoke(o, paramValues); |
---|
| 878 | } |
---|
| 879 | catch (Exception e) { |
---|
| 880 | e.printStackTrace(); |
---|
| 881 | result = null; |
---|
| 882 | } |
---|
| 883 | |
---|
| 884 | return result; |
---|
| 885 | } |
---|
| 886 | |
---|
| 887 | /** |
---|
| 888 | * transfers the local variables into a svm_parameter object |
---|
| 889 | * |
---|
| 890 | * @return the configured svm_parameter object |
---|
| 891 | */ |
---|
| 892 | protected Object getParameters() { |
---|
| 893 | Object result; |
---|
| 894 | int i; |
---|
| 895 | |
---|
| 896 | try { |
---|
| 897 | Class solverTypeEnumClass = Class.forName(CLASS_SOLVERTYPE); |
---|
| 898 | Object[] enumValues = solverTypeEnumClass.getEnumConstants(); |
---|
| 899 | Object solverType = enumValues[m_SVMType]; |
---|
| 900 | |
---|
| 901 | Class[] constructorClasses = new Class[] { solverTypeEnumClass, double.class, double.class }; |
---|
| 902 | Constructor parameterConstructor = Class.forName(CLASS_PARAMETER).getConstructor(constructorClasses); |
---|
| 903 | |
---|
| 904 | result = parameterConstructor.newInstance(solverType, Double.valueOf(m_Cost), |
---|
| 905 | Double.valueOf(m_eps)); |
---|
| 906 | |
---|
| 907 | if (m_Weight.length > 0) { |
---|
| 908 | invokeMethod(result, "setWeights", new Class[] { double[].class, int[].class }, |
---|
| 909 | new Object[] { m_Weight, m_WeightLabel }); |
---|
| 910 | } |
---|
| 911 | } |
---|
| 912 | catch (Exception e) { |
---|
| 913 | e.printStackTrace(); |
---|
| 914 | result = null; |
---|
| 915 | } |
---|
| 916 | |
---|
| 917 | return result; |
---|
| 918 | } |
---|
| 919 | |
---|
| 920 | /** |
---|
| 921 | * returns the svm_problem |
---|
| 922 | * |
---|
| 923 | * @param vx the x values |
---|
| 924 | * @param vy the y values |
---|
| 925 | * @param max_index |
---|
| 926 | * @return the Problem object |
---|
| 927 | */ |
---|
| 928 | protected Object getProblem(List<Object> vx, List<Integer> vy, int max_index) { |
---|
| 929 | Object result; |
---|
| 930 | |
---|
| 931 | try { |
---|
| 932 | result = Class.forName(CLASS_PROBLEM).newInstance(); |
---|
| 933 | |
---|
| 934 | setField(result, "l", Integer.valueOf(vy.size())); |
---|
| 935 | setField(result, "n", Integer.valueOf(max_index)); |
---|
| 936 | setField(result, "bias", getBias()); |
---|
| 937 | |
---|
| 938 | newArray(result, "x", Class.forName(CLASS_FEATURENODE), new int[]{vy.size(), 0}); |
---|
| 939 | for (int i = 0; i < vy.size(); i++) |
---|
| 940 | setField(result, "x", i, vx.get(i)); |
---|
| 941 | |
---|
| 942 | newArray(result, "y", Integer.TYPE, vy.size()); |
---|
| 943 | for (int i = 0; i < vy.size(); i++) |
---|
| 944 | setField(result, "y", i, vy.get(i)); |
---|
| 945 | } |
---|
| 946 | catch (Exception e) { |
---|
| 947 | e.printStackTrace(); |
---|
| 948 | result = null; |
---|
| 949 | } |
---|
| 950 | |
---|
| 951 | return result; |
---|
| 952 | } |
---|
| 953 | |
---|
| 954 | /** |
---|
| 955 | * returns an instance into a sparse liblinear array |
---|
| 956 | * |
---|
| 957 | * @param instance the instance to work on |
---|
| 958 | * @return the liblinear array |
---|
| 959 | * @throws Exception if setup of array fails |
---|
| 960 | */ |
---|
| 961 | protected Object instanceToArray(Instance instance) throws Exception { |
---|
| 962 | int index; |
---|
| 963 | int count; |
---|
| 964 | int i; |
---|
| 965 | Object result; |
---|
| 966 | |
---|
| 967 | // determine number of non-zero attributes |
---|
| 968 | count = 0; |
---|
| 969 | |
---|
| 970 | for (i = 0; i < instance.numValues(); i++) { |
---|
| 971 | if (instance.index(i) == instance.classIndex()) |
---|
| 972 | continue; |
---|
| 973 | if (instance.valueSparse(i) != 0) |
---|
| 974 | count++; |
---|
| 975 | } |
---|
| 976 | |
---|
| 977 | if (m_Bias >= 0) { |
---|
| 978 | count++; |
---|
| 979 | } |
---|
| 980 | |
---|
| 981 | Class[] intDouble = new Class[] { int.class, double.class }; |
---|
| 982 | Constructor nodeConstructor = Class.forName(CLASS_FEATURENODE).getConstructor(intDouble); |
---|
| 983 | |
---|
| 984 | // fill array |
---|
| 985 | result = Array.newInstance(Class.forName(CLASS_FEATURENODE), count); |
---|
| 986 | index = 0; |
---|
| 987 | for (i = 0; i < instance.numValues(); i++) { |
---|
| 988 | |
---|
| 989 | int idx = instance.index(i); |
---|
| 990 | double val = instance.valueSparse(i); |
---|
| 991 | |
---|
| 992 | if (idx == instance.classIndex()) |
---|
| 993 | continue; |
---|
| 994 | if (val == 0) |
---|
| 995 | continue; |
---|
| 996 | |
---|
| 997 | Object node = nodeConstructor.newInstance(Integer.valueOf(idx+1), Double.valueOf(val)); |
---|
| 998 | Array.set(result, index, node); |
---|
| 999 | index++; |
---|
| 1000 | } |
---|
| 1001 | |
---|
| 1002 | // add bias term |
---|
| 1003 | if (m_Bias >= 0) { |
---|
| 1004 | Integer idx = Integer.valueOf(instance.numAttributes()+1); |
---|
| 1005 | Double value = Double.valueOf(m_Bias); |
---|
| 1006 | Object node = nodeConstructor.newInstance(idx, value); |
---|
| 1007 | Array.set(result, index, node); |
---|
| 1008 | } |
---|
| 1009 | |
---|
| 1010 | return result; |
---|
| 1011 | } |
---|
| 1012 | /** |
---|
| 1013 | * Computes the distribution for a given instance. |
---|
| 1014 | * |
---|
| 1015 | * @param instance the instance for which distribution is computed |
---|
| 1016 | * @return the distribution |
---|
| 1017 | * @throws Exception if the distribution can't be computed successfully |
---|
| 1018 | */ |
---|
| 1019 | public double[] distributionForInstance (Instance instance) throws Exception { |
---|
| 1020 | |
---|
| 1021 | if (!getDoNotReplaceMissingValues()) { |
---|
| 1022 | m_ReplaceMissingValues.input(instance); |
---|
| 1023 | m_ReplaceMissingValues.batchFinished(); |
---|
| 1024 | instance = m_ReplaceMissingValues.output(); |
---|
| 1025 | } |
---|
| 1026 | |
---|
| 1027 | if (getConvertNominalToBinary() |
---|
| 1028 | && m_NominalToBinary != null) { |
---|
| 1029 | m_NominalToBinary.input(instance); |
---|
| 1030 | m_NominalToBinary.batchFinished(); |
---|
| 1031 | instance = m_NominalToBinary.output(); |
---|
| 1032 | } |
---|
| 1033 | |
---|
| 1034 | if (m_Filter != null) { |
---|
| 1035 | m_Filter.input(instance); |
---|
| 1036 | m_Filter.batchFinished(); |
---|
| 1037 | instance = m_Filter.output(); |
---|
| 1038 | } |
---|
| 1039 | |
---|
| 1040 | Object x = instanceToArray(instance); |
---|
| 1041 | double v; |
---|
| 1042 | double[] result = new double[instance.numClasses()]; |
---|
| 1043 | if (m_ProbabilityEstimates) { |
---|
| 1044 | if (m_SVMType != SVMTYPE_L2_LR) { |
---|
| 1045 | throw new WekaException("probability estimation is currently only " + |
---|
| 1046 | "supported for L2-regularized logistic regression"); |
---|
| 1047 | } |
---|
| 1048 | |
---|
| 1049 | int[] labels = (int[])invokeMethod(m_Model, "getLabels", null, null); |
---|
| 1050 | double[] prob_estimates = new double[instance.numClasses()]; |
---|
| 1051 | |
---|
| 1052 | v = ((Integer) invokeMethod( |
---|
| 1053 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1054 | "predictProbability", |
---|
| 1055 | new Class[]{ |
---|
| 1056 | Class.forName(CLASS_MODEL), |
---|
| 1057 | Array.newInstance(Class.forName(CLASS_FEATURENODE), Array.getLength(x)).getClass(), |
---|
| 1058 | Array.newInstance(Double.TYPE, prob_estimates.length).getClass()}, |
---|
| 1059 | new Object[]{ m_Model, x, prob_estimates})).doubleValue(); |
---|
| 1060 | |
---|
| 1061 | // Return order of probabilities to canonical weka attribute order |
---|
| 1062 | for (int k = 0; k < prob_estimates.length; k++) { |
---|
| 1063 | result[labels[k]] = prob_estimates[k]; |
---|
| 1064 | } |
---|
| 1065 | } |
---|
| 1066 | else { |
---|
| 1067 | v = ((Integer) invokeMethod( |
---|
| 1068 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1069 | "predict", |
---|
| 1070 | new Class[]{ |
---|
| 1071 | Class.forName(CLASS_MODEL), |
---|
| 1072 | Array.newInstance(Class.forName(CLASS_FEATURENODE), Array.getLength(x)).getClass()}, |
---|
| 1073 | new Object[]{ |
---|
| 1074 | m_Model, |
---|
| 1075 | x})).doubleValue(); |
---|
| 1076 | |
---|
| 1077 | assert (instance.classAttribute().isNominal()); |
---|
| 1078 | result[(int) v] = 1; |
---|
| 1079 | } |
---|
| 1080 | |
---|
| 1081 | return result; |
---|
| 1082 | } |
---|
| 1083 | |
---|
| 1084 | /** |
---|
| 1085 | * Returns default capabilities of the classifier. |
---|
| 1086 | * |
---|
| 1087 | * @return the capabilities of this classifier |
---|
| 1088 | */ |
---|
| 1089 | public Capabilities getCapabilities() { |
---|
| 1090 | Capabilities result = super.getCapabilities(); |
---|
| 1091 | result.disableAll(); |
---|
| 1092 | |
---|
| 1093 | // attributes |
---|
| 1094 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 1095 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 1096 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 1097 | // result.enable(Capability.MISSING_VALUES); |
---|
| 1098 | |
---|
| 1099 | // class |
---|
| 1100 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 1101 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 1102 | return result; |
---|
| 1103 | } |
---|
| 1104 | |
---|
| 1105 | /** |
---|
| 1106 | * builds the classifier |
---|
| 1107 | * |
---|
| 1108 | * @param insts the training instances |
---|
| 1109 | * @throws Exception if liblinear classes not in classpath or liblinear |
---|
| 1110 | * encountered a problem |
---|
| 1111 | */ |
---|
| 1112 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 1113 | m_NominalToBinary = null; |
---|
| 1114 | m_Filter = null; |
---|
| 1115 | |
---|
| 1116 | if (!isPresent()) |
---|
| 1117 | throw new Exception("liblinear classes not in CLASSPATH!"); |
---|
| 1118 | |
---|
| 1119 | // remove instances with missing class |
---|
| 1120 | insts = new Instances(insts); |
---|
| 1121 | insts.deleteWithMissingClass(); |
---|
| 1122 | |
---|
| 1123 | if (!getDoNotReplaceMissingValues()) { |
---|
| 1124 | m_ReplaceMissingValues = new ReplaceMissingValues(); |
---|
| 1125 | m_ReplaceMissingValues.setInputFormat(insts); |
---|
| 1126 | insts = Filter.useFilter(insts, m_ReplaceMissingValues); |
---|
| 1127 | } |
---|
| 1128 | |
---|
| 1129 | // can classifier handle the data? |
---|
| 1130 | // we check this here so that if the user turns off |
---|
| 1131 | // replace missing values filtering, it will fail |
---|
| 1132 | // if the data actually does have missing values |
---|
| 1133 | getCapabilities().testWithFail(insts); |
---|
| 1134 | |
---|
| 1135 | if (getConvertNominalToBinary()) { |
---|
| 1136 | insts = nominalToBinary(insts); |
---|
| 1137 | } |
---|
| 1138 | |
---|
| 1139 | if (getNormalize()) { |
---|
| 1140 | m_Filter = new Normalize(); |
---|
| 1141 | m_Filter.setInputFormat(insts); |
---|
| 1142 | insts = Filter.useFilter(insts, m_Filter); |
---|
| 1143 | } |
---|
| 1144 | |
---|
| 1145 | List<Integer> vy = new ArrayList<Integer>(insts.numInstances()); |
---|
| 1146 | List<Object> vx = new ArrayList<Object>(insts.numInstances()); |
---|
| 1147 | int max_index = 0; |
---|
| 1148 | |
---|
| 1149 | for (int d = 0; d < insts.numInstances(); d++) { |
---|
| 1150 | Instance inst = insts.instance(d); |
---|
| 1151 | Object x = instanceToArray(inst); |
---|
| 1152 | int m = Array.getLength(x); |
---|
| 1153 | if (m > 0) |
---|
| 1154 | max_index = Math.max(max_index, ((Integer) getField(Array.get(x, m - 1), "index")).intValue()); |
---|
| 1155 | vx.add(x); |
---|
| 1156 | double classValue = inst.classValue(); |
---|
| 1157 | int classValueInt = (int)classValue; |
---|
| 1158 | if (classValueInt != classValue) throw new RuntimeException("unsupported class value: " + classValue); |
---|
| 1159 | vy.add(Integer.valueOf(classValueInt)); |
---|
| 1160 | } |
---|
| 1161 | |
---|
| 1162 | if (!m_Debug) { |
---|
| 1163 | invokeMethod( |
---|
| 1164 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1165 | "disableDebugOutput", null, null); |
---|
| 1166 | } else { |
---|
| 1167 | invokeMethod( |
---|
| 1168 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1169 | "enableDebugOutput", null, null); |
---|
| 1170 | } |
---|
| 1171 | |
---|
| 1172 | // reset the PRNG for regression-stable results |
---|
| 1173 | invokeMethod( |
---|
| 1174 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1175 | "resetRandom", null, null); |
---|
| 1176 | |
---|
| 1177 | // train model |
---|
| 1178 | m_Model = invokeMethod( |
---|
| 1179 | Class.forName(CLASS_LINEAR).newInstance(), |
---|
| 1180 | "train", |
---|
| 1181 | new Class[]{ |
---|
| 1182 | Class.forName(CLASS_PROBLEM), |
---|
| 1183 | Class.forName(CLASS_PARAMETER)}, |
---|
| 1184 | new Object[]{ |
---|
| 1185 | getProblem(vx, vy, max_index), |
---|
| 1186 | getParameters()}); |
---|
| 1187 | } |
---|
| 1188 | |
---|
| 1189 | /** |
---|
| 1190 | * turns on nominal to binary filtering |
---|
| 1191 | * if there are not only numeric attributes |
---|
| 1192 | */ |
---|
| 1193 | private Instances nominalToBinary( Instances insts ) throws Exception { |
---|
| 1194 | boolean onlyNumeric = true; |
---|
| 1195 | for (int i = 0; i < insts.numAttributes(); i++) { |
---|
| 1196 | if (i != insts.classIndex()) { |
---|
| 1197 | if (!insts.attribute(i).isNumeric()) { |
---|
| 1198 | onlyNumeric = false; |
---|
| 1199 | break; |
---|
| 1200 | } |
---|
| 1201 | } |
---|
| 1202 | } |
---|
| 1203 | |
---|
| 1204 | if (!onlyNumeric) { |
---|
| 1205 | m_NominalToBinary = new NominalToBinary(); |
---|
| 1206 | m_NominalToBinary.setInputFormat(insts); |
---|
| 1207 | insts = Filter.useFilter(insts, m_NominalToBinary); |
---|
| 1208 | } |
---|
| 1209 | return insts; |
---|
| 1210 | } |
---|
| 1211 | |
---|
| 1212 | /** |
---|
| 1213 | * returns a string representation |
---|
| 1214 | * |
---|
| 1215 | * @return a string representation |
---|
| 1216 | */ |
---|
| 1217 | public String toString() { |
---|
| 1218 | return "LibLINEAR wrapper"; |
---|
| 1219 | } |
---|
| 1220 | |
---|
| 1221 | /** |
---|
| 1222 | * Returns the revision string. |
---|
| 1223 | * |
---|
| 1224 | * @return the revision |
---|
| 1225 | */ |
---|
| 1226 | public String getRevision() { |
---|
| 1227 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1228 | } |
---|
| 1229 | |
---|
| 1230 | /** |
---|
| 1231 | * Main method for testing this class. |
---|
| 1232 | * |
---|
| 1233 | * @param args the options |
---|
| 1234 | */ |
---|
| 1235 | public static void main(String[] args) { |
---|
| 1236 | runClassifier(new LibLINEAR(), args); |
---|
| 1237 | } |
---|
| 1238 | } |
---|
| 1239 | |
---|