| [29] | 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * NominalPrediction.java |
|---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.evaluation; |
|---|
| 24 | |
|---|
| 25 | import weka.core.RevisionHandler; |
|---|
| 26 | import weka.core.RevisionUtils; |
|---|
| 27 | |
|---|
| 28 | import java.io.Serializable; |
|---|
| 29 | |
|---|
| 30 | /** |
|---|
| 31 | * Encapsulates an evaluatable nominal prediction: the predicted probability |
|---|
| 32 | * distribution plus the actual class value. |
|---|
| 33 | * |
|---|
| 34 | * @author Len Trigg (len@reeltwo.com) |
|---|
| 35 | * @version $Revision: 1.12 $ |
|---|
| 36 | */ |
|---|
| 37 | public class NominalPrediction |
|---|
| 38 | implements Prediction, Serializable, RevisionHandler { |
|---|
| 39 | |
|---|
| 40 | /** |
|---|
| 41 | * Remove this if you change this class so that serialization would be |
|---|
| 42 | * affected. |
|---|
| 43 | */ |
|---|
| 44 | static final long serialVersionUID = -8871333992740492788L; |
|---|
| 45 | |
|---|
| 46 | /** The predicted probabilities */ |
|---|
| 47 | private double [] m_Distribution; |
|---|
| 48 | |
|---|
| 49 | /** The actual class value */ |
|---|
| 50 | private double m_Actual = MISSING_VALUE; |
|---|
| 51 | |
|---|
| 52 | /** The predicted class value */ |
|---|
| 53 | private double m_Predicted = MISSING_VALUE; |
|---|
| 54 | |
|---|
| 55 | /** The weight assigned to this prediction */ |
|---|
| 56 | private double m_Weight = 1; |
|---|
| 57 | |
|---|
| 58 | /** |
|---|
| 59 | * Creates the NominalPrediction object with a default weight of 1.0. |
|---|
| 60 | * |
|---|
| 61 | * @param actual the actual value, or MISSING_VALUE. |
|---|
| 62 | * @param distribution the predicted probability distribution. Use |
|---|
| 63 | * NominalPrediction.makeDistribution() if you only know the predicted value. |
|---|
| 64 | */ |
|---|
| 65 | public NominalPrediction(double actual, double [] distribution) { |
|---|
| 66 | |
|---|
| 67 | this(actual, distribution, 1); |
|---|
| 68 | } |
|---|
| 69 | |
|---|
| 70 | /** |
|---|
| 71 | * Creates the NominalPrediction object. |
|---|
| 72 | * |
|---|
| 73 | * @param actual the actual value, or MISSING_VALUE. |
|---|
| 74 | * @param distribution the predicted probability distribution. Use |
|---|
| 75 | * NominalPrediction.makeDistribution() if you only know the predicted value. |
|---|
| 76 | * @param weight the weight assigned to the prediction. |
|---|
| 77 | */ |
|---|
| 78 | public NominalPrediction(double actual, double [] distribution, |
|---|
| 79 | double weight) { |
|---|
| 80 | |
|---|
| 81 | if (distribution == null) { |
|---|
| 82 | throw new NullPointerException("Null distribution in NominalPrediction."); |
|---|
| 83 | } |
|---|
| 84 | m_Actual = actual; |
|---|
| 85 | m_Distribution = distribution.clone(); |
|---|
| 86 | m_Weight = weight; |
|---|
| 87 | updatePredicted(); |
|---|
| 88 | } |
|---|
| 89 | |
|---|
| 90 | /** |
|---|
| 91 | * Gets the predicted probabilities |
|---|
| 92 | * |
|---|
| 93 | * @return the predicted probabilities |
|---|
| 94 | */ |
|---|
| 95 | public double [] distribution() { |
|---|
| 96 | |
|---|
| 97 | return m_Distribution; |
|---|
| 98 | } |
|---|
| 99 | |
|---|
| 100 | /** |
|---|
| 101 | * Gets the actual class value. |
|---|
| 102 | * |
|---|
| 103 | * @return the actual class value, or MISSING_VALUE if no |
|---|
| 104 | * prediction was made. |
|---|
| 105 | */ |
|---|
| 106 | public double actual() { |
|---|
| 107 | |
|---|
| 108 | return m_Actual; |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | /** |
|---|
| 112 | * Gets the predicted class value. |
|---|
| 113 | * |
|---|
| 114 | * @return the predicted class value, or MISSING_VALUE if no |
|---|
| 115 | * prediction was made. |
|---|
| 116 | */ |
|---|
| 117 | public double predicted() { |
|---|
| 118 | |
|---|
| 119 | return m_Predicted; |
|---|
| 120 | } |
|---|
| 121 | |
|---|
| 122 | /** |
|---|
| 123 | * Gets the weight assigned to this prediction. This is typically the weight |
|---|
| 124 | * of the test instance the prediction was made for. |
|---|
| 125 | * |
|---|
| 126 | * @return the weight assigned to this prediction. |
|---|
| 127 | */ |
|---|
| 128 | public double weight() { |
|---|
| 129 | |
|---|
| 130 | return m_Weight; |
|---|
| 131 | } |
|---|
| 132 | |
|---|
| 133 | /** |
|---|
| 134 | * Calculates the prediction margin. This is defined as the difference |
|---|
| 135 | * between the probability predicted for the actual class and the highest |
|---|
| 136 | * predicted probability of the other classes. |
|---|
| 137 | * |
|---|
| 138 | * @return the margin for this prediction, or |
|---|
| 139 | * MISSING_VALUE if either the actual or predicted value |
|---|
| 140 | * is missing. |
|---|
| 141 | */ |
|---|
| 142 | public double margin() { |
|---|
| 143 | |
|---|
| 144 | if ((m_Actual == MISSING_VALUE) || |
|---|
| 145 | (m_Predicted == MISSING_VALUE)) { |
|---|
| 146 | return MISSING_VALUE; |
|---|
| 147 | } |
|---|
| 148 | double probActual = m_Distribution[(int)m_Actual]; |
|---|
| 149 | double probNext = 0; |
|---|
| 150 | for(int i = 0; i < m_Distribution.length; i++) |
|---|
| 151 | if ((i != m_Actual) && |
|---|
| 152 | (m_Distribution[i] > probNext)) |
|---|
| 153 | probNext = m_Distribution[i]; |
|---|
| 154 | |
|---|
| 155 | return probActual - probNext; |
|---|
| 156 | } |
|---|
| 157 | |
|---|
| 158 | /** |
|---|
| 159 | * Convert a single prediction into a probability distribution |
|---|
| 160 | * with all zero probabilities except the predicted value which |
|---|
| 161 | * has probability 1.0. If no prediction was made, all probabilities |
|---|
| 162 | * are zero. |
|---|
| 163 | * |
|---|
| 164 | * @param predictedClass the index of the predicted class, or |
|---|
| 165 | * MISSING_VALUE if no prediction was made. |
|---|
| 166 | * @param numClasses the number of possible classes for this nominal |
|---|
| 167 | * prediction. |
|---|
| 168 | * @return the probability distribution. |
|---|
| 169 | */ |
|---|
| 170 | public static double [] makeDistribution(double predictedClass, |
|---|
| 171 | int numClasses) { |
|---|
| 172 | |
|---|
| 173 | double [] dist = new double [numClasses]; |
|---|
| 174 | if (predictedClass == MISSING_VALUE) { |
|---|
| 175 | return dist; |
|---|
| 176 | } |
|---|
| 177 | dist[(int)predictedClass] = 1.0; |
|---|
| 178 | return dist; |
|---|
| 179 | } |
|---|
| 180 | |
|---|
| 181 | /** |
|---|
| 182 | * Creates a uniform probability distribution -- where each of the |
|---|
| 183 | * possible classes is assigned equal probability. |
|---|
| 184 | * |
|---|
| 185 | * @param numClasses the number of possible classes for this nominal |
|---|
| 186 | * prediction. |
|---|
| 187 | * @return the probability distribution. |
|---|
| 188 | */ |
|---|
| 189 | public static double [] makeUniformDistribution(int numClasses) { |
|---|
| 190 | |
|---|
| 191 | double [] dist = new double [numClasses]; |
|---|
| 192 | for (int i = 0; i < numClasses; i++) { |
|---|
| 193 | dist[i] = 1.0 / numClasses; |
|---|
| 194 | } |
|---|
| 195 | return dist; |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | /** |
|---|
| 199 | * Determines the predicted class (doesn't detect multiple |
|---|
| 200 | * classifications). If no prediction was made (i.e. all zero |
|---|
| 201 | * probababilities in the distribution), m_Prediction is set to |
|---|
| 202 | * MISSING_VALUE. |
|---|
| 203 | */ |
|---|
| 204 | private void updatePredicted() { |
|---|
| 205 | |
|---|
| 206 | int predictedClass = -1; |
|---|
| 207 | double bestProb = 0.0; |
|---|
| 208 | for(int i = 0; i < m_Distribution.length; i++) { |
|---|
| 209 | if (m_Distribution[i] > bestProb) { |
|---|
| 210 | predictedClass = i; |
|---|
| 211 | bestProb = m_Distribution[i]; |
|---|
| 212 | } |
|---|
| 213 | } |
|---|
| 214 | |
|---|
| 215 | if (predictedClass != -1) { |
|---|
| 216 | m_Predicted = predictedClass; |
|---|
| 217 | } else { |
|---|
| 218 | m_Predicted = MISSING_VALUE; |
|---|
| 219 | } |
|---|
| 220 | } |
|---|
| 221 | |
|---|
| 222 | /** |
|---|
| 223 | * Gets a human readable representation of this prediction. |
|---|
| 224 | * |
|---|
| 225 | * @return a human readable representation of this prediction. |
|---|
| 226 | */ |
|---|
| 227 | public String toString() { |
|---|
| 228 | |
|---|
| 229 | StringBuffer sb = new StringBuffer(); |
|---|
| 230 | sb.append("NOM: ").append(actual()).append(" ").append(predicted()); |
|---|
| 231 | sb.append(' ').append(weight()); |
|---|
| 232 | double [] dist = distribution(); |
|---|
| 233 | for (int i = 0; i < dist.length; i++) { |
|---|
| 234 | sb.append(' ').append(dist[i]); |
|---|
| 235 | } |
|---|
| 236 | return sb.toString(); |
|---|
| 237 | } |
|---|
| 238 | |
|---|
| 239 | /** |
|---|
| 240 | * Returns the revision string. |
|---|
| 241 | * |
|---|
| 242 | * @return the revision |
|---|
| 243 | */ |
|---|
| 244 | public String getRevision() { |
|---|
| 245 | return RevisionUtils.extract("$Revision: 1.12 $"); |
|---|
| 246 | } |
|---|
| 247 | } |
|---|
| 248 | |
|---|