[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MarginCurve.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.evaluation; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.FastVector; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.DenseInstance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.RevisionHandler; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | |
---|
| 34 | /** |
---|
| 35 | * Generates points illustrating the prediction margin. The margin is defined |
---|
| 36 | * as the difference between the probability predicted for the actual class and |
---|
| 37 | * the highest probability predicted for the other classes. One hypothesis |
---|
| 38 | * as to the good performance of boosting algorithms is that they increaes the |
---|
| 39 | * margins on the training data and this gives better performance on test data. |
---|
| 40 | * |
---|
| 41 | * @author Len Trigg (len@reeltwo.com) |
---|
| 42 | * @version $Revision: 5987 $ |
---|
| 43 | */ |
---|
| 44 | public class MarginCurve |
---|
| 45 | implements RevisionHandler { |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | * Calculates the cumulative margin distribution for the set of |
---|
| 49 | * predictions, returning the result as a set of Instances. The |
---|
| 50 | * structure of these Instances is as follows:<p> <ul> |
---|
| 51 | * <li> <b>Margin</b> contains the margin value (which should be plotted |
---|
| 52 | * as an x-coordinate) |
---|
| 53 | * <li> <b>Current</b> contains the count of instances with the current |
---|
| 54 | * margin (plot as y axis) |
---|
| 55 | * <li> <b>Cumulative</b> contains the count of instances with margin |
---|
| 56 | * less than or equal to the current margin (plot as y axis) |
---|
| 57 | * </ul> <p> |
---|
| 58 | * |
---|
| 59 | * @return datapoints as a set of instances, null if no predictions |
---|
| 60 | * have been made. |
---|
| 61 | */ |
---|
| 62 | public Instances getCurve(FastVector predictions) { |
---|
| 63 | |
---|
| 64 | if (predictions.size() == 0) { |
---|
| 65 | return null; |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | Instances insts = makeHeader(); |
---|
| 69 | double [] margins = getMargins(predictions); |
---|
| 70 | int [] sorted = Utils.sort(margins); |
---|
| 71 | int binMargin = 0; |
---|
| 72 | int totalMargin = 0; |
---|
| 73 | insts.add(makeInstance(-1, binMargin, totalMargin)); |
---|
| 74 | for (int i = 0; i < sorted.length; i++) { |
---|
| 75 | double current = margins[sorted[i]]; |
---|
| 76 | double weight = ((NominalPrediction)predictions.elementAt(sorted[i])) |
---|
| 77 | .weight(); |
---|
| 78 | totalMargin += weight; |
---|
| 79 | binMargin += weight; |
---|
| 80 | if (true) { |
---|
| 81 | insts.add(makeInstance(current, binMargin, totalMargin)); |
---|
| 82 | binMargin = 0; |
---|
| 83 | } |
---|
| 84 | } |
---|
| 85 | return insts; |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | /** |
---|
| 89 | * Pulls all the margin values out of a vector of NominalPredictions. |
---|
| 90 | * |
---|
| 91 | * @param predictions a FastVector containing NominalPredictions |
---|
| 92 | * @return an array of margin values. |
---|
| 93 | */ |
---|
| 94 | private double [] getMargins(FastVector predictions) { |
---|
| 95 | |
---|
| 96 | // sort by predicted probability of the desired class. |
---|
| 97 | double [] margins = new double [predictions.size()]; |
---|
| 98 | for (int i = 0; i < margins.length; i++) { |
---|
| 99 | NominalPrediction pred = (NominalPrediction)predictions.elementAt(i); |
---|
| 100 | margins[i] = pred.margin(); |
---|
| 101 | } |
---|
| 102 | return margins; |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Creates an Instances object with the attributes we will be calculating. |
---|
| 107 | * |
---|
| 108 | * @return the Instances structure. |
---|
| 109 | */ |
---|
| 110 | private Instances makeHeader() { |
---|
| 111 | |
---|
| 112 | FastVector fv = new FastVector(); |
---|
| 113 | fv.addElement(new Attribute("Margin")); |
---|
| 114 | fv.addElement(new Attribute("Current")); |
---|
| 115 | fv.addElement(new Attribute("Cumulative")); |
---|
| 116 | return new Instances("MarginCurve", fv, 100); |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | /** |
---|
| 120 | * Creates an Instance object with the attributes calculated. |
---|
| 121 | * |
---|
| 122 | * @param margin the margin for this data point. |
---|
| 123 | * @param current the number of instances with this margin. |
---|
| 124 | * @param cumulative the number of instances with margin less than or equal |
---|
| 125 | * to this margin. |
---|
| 126 | * @return the Instance object. |
---|
| 127 | */ |
---|
| 128 | private Instance makeInstance(double margin, int current, int cumulative) { |
---|
| 129 | |
---|
| 130 | int count = 0; |
---|
| 131 | double [] vals = new double[3]; |
---|
| 132 | vals[count++] = margin; |
---|
| 133 | vals[count++] = current; |
---|
| 134 | vals[count++] = cumulative; |
---|
| 135 | return new DenseInstance(1.0, vals); |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | /** |
---|
| 139 | * Returns the revision string. |
---|
| 140 | * |
---|
| 141 | * @return the revision |
---|
| 142 | */ |
---|
| 143 | public String getRevision() { |
---|
| 144 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Tests the MarginCurve generation from the command line. |
---|
| 149 | * The classifier is currently hardcoded. Pipe in an arff file. |
---|
| 150 | * |
---|
| 151 | * @param args currently ignored |
---|
| 152 | */ |
---|
| 153 | public static void main(String [] args) { |
---|
| 154 | |
---|
| 155 | try { |
---|
| 156 | Utils.SMALL = 0; |
---|
| 157 | Instances inst = new Instances(new java.io.InputStreamReader(System.in)); |
---|
| 158 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
| 159 | MarginCurve tc = new MarginCurve(); |
---|
| 160 | EvaluationUtils eu = new EvaluationUtils(); |
---|
| 161 | weka.classifiers.meta.LogitBoost classifier |
---|
| 162 | = new weka.classifiers.meta.LogitBoost(); |
---|
| 163 | classifier.setNumIterations(20); |
---|
| 164 | FastVector predictions |
---|
| 165 | = eu.getTrainTestPredictions(classifier, inst, inst); |
---|
| 166 | Instances result = tc.getCurve(predictions); |
---|
| 167 | System.out.println(result); |
---|
| 168 | } catch (Exception ex) { |
---|
| 169 | ex.printStackTrace(); |
---|
| 170 | } |
---|
| 171 | } |
---|
| 172 | } |
---|