1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CostCurve.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.core.Attribute; |
---|
28 | import weka.core.FastVector; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.DenseInstance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.RevisionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | |
---|
35 | /** |
---|
36 | * Generates points illustrating probablity cost tradeoffs that can be |
---|
37 | * obtained by varying the threshold value between classes. For example, |
---|
38 | * the typical threshold value of 0.5 means the predicted probability of |
---|
39 | * "positive" must be higher than 0.5 for the instance to be predicted as |
---|
40 | * "positive". |
---|
41 | * |
---|
42 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
43 | * @version $Revision: 5987 $ |
---|
44 | */ |
---|
45 | |
---|
46 | public class CostCurve |
---|
47 | implements RevisionHandler { |
---|
48 | |
---|
49 | /** The name of the relation used in cost curve datasets */ |
---|
50 | public static final String RELATION_NAME = "CostCurve"; |
---|
51 | |
---|
52 | /** attribute name: Probability Cost Function */ |
---|
53 | public static final String PROB_COST_FUNC_NAME = "Probability Cost Function"; |
---|
54 | /** attribute name: Normalized Expected Cost */ |
---|
55 | public static final String NORM_EXPECTED_COST_NAME = "Normalized Expected Cost"; |
---|
56 | /** attribute name: Threshold */ |
---|
57 | public static final String THRESHOLD_NAME = "Threshold"; |
---|
58 | |
---|
59 | /** |
---|
60 | * Calculates the performance stats for the default class and return |
---|
61 | * results as a set of Instances. The |
---|
62 | * structure of these Instances is as follows:<p> <ul> |
---|
63 | * <li> <b>Probability Cost Function </b> |
---|
64 | * <li> <b>Normalized Expected Cost</b> |
---|
65 | * <li> <b>Threshold</b> contains the probability threshold that gives |
---|
66 | * rise to the previous performance values. |
---|
67 | * </ul> <p> |
---|
68 | * |
---|
69 | * @see TwoClassStats |
---|
70 | * @param predictions the predictions to base the curve on |
---|
71 | * @return datapoints as a set of instances, null if no predictions |
---|
72 | * have been made. |
---|
73 | */ |
---|
74 | public Instances getCurve(FastVector predictions) { |
---|
75 | |
---|
76 | if (predictions.size() == 0) { |
---|
77 | return null; |
---|
78 | } |
---|
79 | return getCurve(predictions, |
---|
80 | ((NominalPrediction)predictions.elementAt(0)) |
---|
81 | .distribution().length - 1); |
---|
82 | } |
---|
83 | |
---|
84 | /** |
---|
85 | * Calculates the performance stats for the desired class and return |
---|
86 | * results as a set of Instances. |
---|
87 | * |
---|
88 | * @param predictions the predictions to base the curve on |
---|
89 | * @param classIndex index of the class of interest. |
---|
90 | * @return datapoints as a set of instances. |
---|
91 | */ |
---|
92 | public Instances getCurve(FastVector predictions, int classIndex) { |
---|
93 | |
---|
94 | if ((predictions.size() == 0) || |
---|
95 | (((NominalPrediction)predictions.elementAt(0)) |
---|
96 | .distribution().length <= classIndex)) { |
---|
97 | return null; |
---|
98 | } |
---|
99 | |
---|
100 | ThresholdCurve tc = new ThresholdCurve(); |
---|
101 | Instances threshInst = tc.getCurve(predictions, classIndex); |
---|
102 | |
---|
103 | Instances insts = makeHeader(); |
---|
104 | int fpind = threshInst.attribute(ThresholdCurve.FP_RATE_NAME).index(); |
---|
105 | int tpind = threshInst.attribute(ThresholdCurve.TP_RATE_NAME).index(); |
---|
106 | int threshind = threshInst.attribute(ThresholdCurve.THRESHOLD_NAME).index(); |
---|
107 | |
---|
108 | double [] vals; |
---|
109 | double fpval, tpval, thresh; |
---|
110 | for (int i = 0; i< threshInst.numInstances(); i++) { |
---|
111 | fpval = threshInst.instance(i).value(fpind); |
---|
112 | tpval = threshInst.instance(i).value(tpind); |
---|
113 | thresh = threshInst.instance(i).value(threshind); |
---|
114 | vals = new double [3]; |
---|
115 | vals[0] = 0; vals[1] = fpval; vals[2] = thresh; |
---|
116 | insts.add(new DenseInstance(1.0, vals)); |
---|
117 | vals = new double [3]; |
---|
118 | vals[0] = 1; vals[1] = 1.0 - tpval; vals[2] = thresh; |
---|
119 | insts.add(new DenseInstance(1.0, vals)); |
---|
120 | } |
---|
121 | |
---|
122 | return insts; |
---|
123 | } |
---|
124 | |
---|
125 | /** |
---|
126 | * generates the header |
---|
127 | * |
---|
128 | * @return the header |
---|
129 | */ |
---|
130 | private Instances makeHeader() { |
---|
131 | |
---|
132 | FastVector fv = new FastVector(); |
---|
133 | fv.addElement(new Attribute(PROB_COST_FUNC_NAME)); |
---|
134 | fv.addElement(new Attribute(NORM_EXPECTED_COST_NAME)); |
---|
135 | fv.addElement(new Attribute(THRESHOLD_NAME)); |
---|
136 | return new Instances(RELATION_NAME, fv, 100); |
---|
137 | } |
---|
138 | |
---|
139 | /** |
---|
140 | * Returns the revision string. |
---|
141 | * |
---|
142 | * @return the revision |
---|
143 | */ |
---|
144 | public String getRevision() { |
---|
145 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * Tests the CostCurve generation from the command line. |
---|
150 | * The classifier is currently hardcoded. Pipe in an arff file. |
---|
151 | * |
---|
152 | * @param args currently ignored |
---|
153 | */ |
---|
154 | public static void main(String [] args) { |
---|
155 | |
---|
156 | try { |
---|
157 | |
---|
158 | Instances inst = new Instances(new java.io.InputStreamReader(System.in)); |
---|
159 | |
---|
160 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
161 | CostCurve cc = new CostCurve(); |
---|
162 | EvaluationUtils eu = new EvaluationUtils(); |
---|
163 | Classifier classifier = new weka.classifiers.functions.Logistic(); |
---|
164 | FastVector predictions = new FastVector(); |
---|
165 | for (int i = 0; i < 2; i++) { // Do two runs. |
---|
166 | eu.setSeed(i); |
---|
167 | predictions.appendElements(eu.getCVPredictions(classifier, inst, 10)); |
---|
168 | //System.out.println("\n\n\n"); |
---|
169 | } |
---|
170 | Instances result = cc.getCurve(predictions); |
---|
171 | System.out.println(result); |
---|
172 | |
---|
173 | } catch (Exception ex) { |
---|
174 | ex.printStackTrace(); |
---|
175 | } |
---|
176 | } |
---|
177 | } |
---|