1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | package weka.classifiers.bayes.net.estimate; |
---|
18 | |
---|
19 | import weka.classifiers.bayes.BayesNet; |
---|
20 | import weka.classifiers.bayes.net.search.local.K2; |
---|
21 | import weka.core.Attribute; |
---|
22 | import weka.core.FastVector; |
---|
23 | import weka.core.Instance; |
---|
24 | import weka.core.DenseInstance; |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.Option; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Statistics; |
---|
29 | import weka.core.Utils; |
---|
30 | import weka.estimators.Estimator; |
---|
31 | |
---|
32 | import java.util.Enumeration; |
---|
33 | import java.util.Vector; |
---|
34 | |
---|
35 | /** |
---|
36 | <!-- globalinfo-start --> |
---|
37 | * Multinomial BMA Estimator. |
---|
38 | * <p/> |
---|
39 | <!-- globalinfo-end --> |
---|
40 | * |
---|
41 | <!-- options-start --> |
---|
42 | * Valid options are: <p/> |
---|
43 | * |
---|
44 | * <pre> -k2 |
---|
45 | * Whether to use K2 prior. |
---|
46 | * </pre> |
---|
47 | * |
---|
48 | * <pre> -A <alpha> |
---|
49 | * Initial count (alpha) |
---|
50 | * </pre> |
---|
51 | * |
---|
52 | <!-- options-end --> |
---|
53 | * |
---|
54 | * @version $Revision: 5987 $ |
---|
55 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
56 | */ |
---|
57 | public class MultiNomialBMAEstimator |
---|
58 | extends BayesNetEstimator { |
---|
59 | |
---|
60 | /** for serialization */ |
---|
61 | static final long serialVersionUID = 8330705772601586313L; |
---|
62 | |
---|
63 | /** whether to use K2 prior */ |
---|
64 | protected boolean m_bUseK2Prior = true; |
---|
65 | |
---|
66 | /** |
---|
67 | * Returns a string describing this object |
---|
68 | * @return a description of the classifier suitable for |
---|
69 | * displaying in the explorer/experimenter gui |
---|
70 | */ |
---|
71 | public String globalInfo() { |
---|
72 | return |
---|
73 | "Multinomial BMA Estimator."; |
---|
74 | } |
---|
75 | |
---|
76 | /** |
---|
77 | * estimateCPTs estimates the conditional probability tables for the Bayes |
---|
78 | * Net using the network structure. |
---|
79 | * |
---|
80 | * @param bayesNet the bayes net to use |
---|
81 | * @throws Exception if number of parents doesn't fit (more than 1) |
---|
82 | */ |
---|
83 | public void estimateCPTs(BayesNet bayesNet) throws Exception { |
---|
84 | initCPTs(bayesNet); |
---|
85 | |
---|
86 | // sanity check to see if nodes have not more than one parent |
---|
87 | for (int iAttribute = 0; iAttribute < bayesNet.m_Instances.numAttributes(); iAttribute++) { |
---|
88 | if (bayesNet.getParentSet(iAttribute).getNrOfParents() > 1) { |
---|
89 | throw new Exception("Cannot handle networks with nodes with more than 1 parent (yet)."); |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | // filter data to binary |
---|
94 | Instances instances = new Instances(bayesNet.m_Instances); |
---|
95 | while (instances.numInstances() > 0) { |
---|
96 | instances.delete(0); |
---|
97 | } |
---|
98 | for (int iAttribute = instances.numAttributes() - 1; iAttribute >= 0; iAttribute--) { |
---|
99 | if (iAttribute != instances.classIndex()) { |
---|
100 | FastVector values = new FastVector(); |
---|
101 | values.addElement("0"); |
---|
102 | values.addElement("1"); |
---|
103 | Attribute a = new Attribute(instances.attribute(iAttribute).name(), (FastVector) values); |
---|
104 | instances.deleteAttributeAt(iAttribute); |
---|
105 | instances.insertAttributeAt(a,iAttribute); |
---|
106 | } |
---|
107 | } |
---|
108 | |
---|
109 | for (int iInstance = 0; iInstance < bayesNet.m_Instances.numInstances(); iInstance++) { |
---|
110 | Instance instanceOrig = bayesNet.m_Instances.instance(iInstance); |
---|
111 | Instance instance = new DenseInstance(instances.numAttributes()); |
---|
112 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
---|
113 | if (iAttribute != instances.classIndex()) { |
---|
114 | if (instanceOrig.value(iAttribute) > 0) { |
---|
115 | instance.setValue(iAttribute, 1); |
---|
116 | } |
---|
117 | } else { |
---|
118 | instance.setValue(iAttribute, instanceOrig.value(iAttribute)); |
---|
119 | } |
---|
120 | } |
---|
121 | } |
---|
122 | // ok, now all data is binary, except the class attribute |
---|
123 | // now learn the empty and tree network |
---|
124 | |
---|
125 | BayesNet EmptyNet = new BayesNet(); |
---|
126 | K2 oSearchAlgorithm = new K2(); |
---|
127 | oSearchAlgorithm.setInitAsNaiveBayes(false); |
---|
128 | oSearchAlgorithm.setMaxNrOfParents(0); |
---|
129 | EmptyNet.setSearchAlgorithm(oSearchAlgorithm); |
---|
130 | EmptyNet.buildClassifier(instances); |
---|
131 | |
---|
132 | BayesNet NBNet = new BayesNet(); |
---|
133 | oSearchAlgorithm.setInitAsNaiveBayes(true); |
---|
134 | oSearchAlgorithm.setMaxNrOfParents(1); |
---|
135 | NBNet.setSearchAlgorithm(oSearchAlgorithm); |
---|
136 | NBNet.buildClassifier(instances); |
---|
137 | |
---|
138 | // estimate CPTs |
---|
139 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
---|
140 | if (iAttribute != instances.classIndex()) { |
---|
141 | double w1 = 0.0, w2 = 0.0; |
---|
142 | int nAttValues = instances.attribute(iAttribute).numValues(); |
---|
143 | if (m_bUseK2Prior == true) { |
---|
144 | // use Cooper and Herskovitz's metric |
---|
145 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
---|
146 | w1 += Statistics.lnGamma(1 + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) |
---|
147 | - Statistics.lnGamma(1); |
---|
148 | } |
---|
149 | w1 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + instances.numInstances()); |
---|
150 | |
---|
151 | for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { |
---|
152 | int nTotal = 0; |
---|
153 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
---|
154 | double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); |
---|
155 | w2 += Statistics.lnGamma(1 + nCount) |
---|
156 | - Statistics.lnGamma(1); |
---|
157 | nTotal += nCount; |
---|
158 | } |
---|
159 | w2 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + nTotal); |
---|
160 | } |
---|
161 | } else { |
---|
162 | // use BDe metric |
---|
163 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
---|
164 | w1 += Statistics.lnGamma(1.0/nAttValues + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) |
---|
165 | - Statistics.lnGamma(1.0/nAttValues); |
---|
166 | } |
---|
167 | w1 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + instances.numInstances()); |
---|
168 | |
---|
169 | int nParentValues = bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); |
---|
170 | for (int iParent = 0; iParent < nParentValues; iParent++) { |
---|
171 | int nTotal = 0; |
---|
172 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
---|
173 | double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); |
---|
174 | w2 += Statistics.lnGamma(1.0/(nAttValues * nParentValues) + nCount) |
---|
175 | - Statistics.lnGamma(1.0/(nAttValues * nParentValues)); |
---|
176 | nTotal += nCount; |
---|
177 | } |
---|
178 | w2 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + nTotal); |
---|
179 | } |
---|
180 | } |
---|
181 | |
---|
182 | // System.out.println(w1 + " " + w2 + " " + (w2 - w1)); |
---|
183 | // normalize weigths |
---|
184 | if (w1 < w2) { |
---|
185 | w2 = w2 - w1; |
---|
186 | w1 = 0; |
---|
187 | w1 = 1 / (1 + Math.exp(w2)); |
---|
188 | w2 = Math.exp(w2) / (1 + Math.exp(w2)); |
---|
189 | } else { |
---|
190 | w1 = w1 - w2; |
---|
191 | w2 = 0; |
---|
192 | w2 = 1 / (1 + Math.exp(w1)); |
---|
193 | w1 = Math.exp(w1) / (1 + Math.exp(w1)); |
---|
194 | } |
---|
195 | |
---|
196 | for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { |
---|
197 | bayesNet.m_Distributions[iAttribute][iParent] = |
---|
198 | new DiscreteEstimatorFullBayes( |
---|
199 | instances.attribute(iAttribute).numValues(), |
---|
200 | w1, w2, |
---|
201 | (DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0], |
---|
202 | (DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent], |
---|
203 | m_fAlpha |
---|
204 | ); |
---|
205 | } |
---|
206 | } |
---|
207 | } |
---|
208 | int iAttribute = instances.classIndex(); |
---|
209 | bayesNet.m_Distributions[iAttribute][0] = EmptyNet.m_Distributions[iAttribute][0]; |
---|
210 | } // estimateCPTs |
---|
211 | |
---|
212 | /** |
---|
213 | * Updates the classifier with the given instance. |
---|
214 | * |
---|
215 | * @param bayesNet the bayes net to use |
---|
216 | * @param instance the new training instance to include in the model |
---|
217 | * @throws Exception if the instance could not be incorporated in |
---|
218 | * the model. |
---|
219 | */ |
---|
220 | public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { |
---|
221 | throw new Exception("updateClassifier does not apply to BMA estimator"); |
---|
222 | } // updateClassifier |
---|
223 | |
---|
224 | /** |
---|
225 | * initCPTs reserves space for CPTs and set all counts to zero |
---|
226 | * |
---|
227 | * @param bayesNet the bayes net to use |
---|
228 | * @throws Exception doesn't apply |
---|
229 | */ |
---|
230 | public void initCPTs(BayesNet bayesNet) throws Exception { |
---|
231 | // Reserve sufficient memory |
---|
232 | bayesNet.m_Distributions = new Estimator[bayesNet.m_Instances.numAttributes()][2]; |
---|
233 | } // initCPTs |
---|
234 | |
---|
235 | |
---|
236 | /** |
---|
237 | * @return boolean |
---|
238 | */ |
---|
239 | public boolean isUseK2Prior() { |
---|
240 | return m_bUseK2Prior; |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Sets the UseK2Prior. |
---|
245 | * |
---|
246 | * @param bUseK2Prior The bUseK2Prior to set |
---|
247 | */ |
---|
248 | public void setUseK2Prior(boolean bUseK2Prior) { |
---|
249 | m_bUseK2Prior = bUseK2Prior; |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Calculates the class membership probabilities for the given test |
---|
254 | * instance. |
---|
255 | * |
---|
256 | * @param bayesNet the bayes net to use |
---|
257 | * @param instance the instance to be classified |
---|
258 | * @return predicted class probability distribution |
---|
259 | * @throws Exception if there is a problem generating the prediction |
---|
260 | */ |
---|
261 | public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception { |
---|
262 | Instances instances = bayesNet.m_Instances; |
---|
263 | int nNumClasses = instances.numClasses(); |
---|
264 | double[] fProbs = new double[nNumClasses]; |
---|
265 | |
---|
266 | for (int iClass = 0; iClass < nNumClasses; iClass++) { |
---|
267 | fProbs[iClass] = 1.0; |
---|
268 | } |
---|
269 | |
---|
270 | for (int iClass = 0; iClass < nNumClasses; iClass++) { |
---|
271 | double logfP = 0; |
---|
272 | |
---|
273 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
---|
274 | double iCPT = 0; |
---|
275 | |
---|
276 | for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getNrOfParents(); iParent++) { |
---|
277 | int nParent = bayesNet.getParentSet(iAttribute).getParent(iParent); |
---|
278 | |
---|
279 | if (nParent == instances.classIndex()) { |
---|
280 | iCPT = iCPT * nNumClasses + iClass; |
---|
281 | } else { |
---|
282 | iCPT = iCPT * instances.attribute(nParent).numValues() + instance.value(nParent); |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | if (iAttribute == instances.classIndex()) { |
---|
287 | logfP += Math.log(bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(iClass)); |
---|
288 | } else { |
---|
289 | logfP += instance.value(iAttribute) * Math.log( |
---|
290 | bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(instance.value(1))); |
---|
291 | } |
---|
292 | } |
---|
293 | |
---|
294 | fProbs[iClass] += logfP; |
---|
295 | } |
---|
296 | |
---|
297 | // Find maximum |
---|
298 | double fMax = fProbs[0]; |
---|
299 | for (int iClass = 0; iClass < nNumClasses; iClass++) { |
---|
300 | if (fProbs[iClass] > fMax) { |
---|
301 | fMax = fProbs[iClass]; |
---|
302 | } |
---|
303 | } |
---|
304 | // transform from log-space to normal-space |
---|
305 | for (int iClass = 0; iClass < nNumClasses; iClass++) { |
---|
306 | fProbs[iClass] = Math.exp(fProbs[iClass] - fMax); |
---|
307 | } |
---|
308 | |
---|
309 | // Display probabilities |
---|
310 | Utils.normalize(fProbs); |
---|
311 | |
---|
312 | return fProbs; |
---|
313 | } // distributionForInstance |
---|
314 | |
---|
315 | /** |
---|
316 | * Returns an enumeration describing the available options |
---|
317 | * |
---|
318 | * @return an enumeration of all the available options |
---|
319 | */ |
---|
320 | public Enumeration listOptions() { |
---|
321 | Vector newVector = new Vector(1); |
---|
322 | |
---|
323 | newVector.addElement(new Option( |
---|
324 | "\tWhether to use K2 prior.\n", |
---|
325 | "k2", 0, "-k2")); |
---|
326 | |
---|
327 | Enumeration enu = super.listOptions(); |
---|
328 | while (enu.hasMoreElements()) { |
---|
329 | newVector.addElement(enu.nextElement()); |
---|
330 | } |
---|
331 | |
---|
332 | return newVector.elements(); |
---|
333 | } // listOptions |
---|
334 | |
---|
335 | /** |
---|
336 | * Parses a given list of options. <p/> |
---|
337 | * |
---|
338 | <!-- options-start --> |
---|
339 | * Valid options are: <p/> |
---|
340 | * |
---|
341 | * <pre> -k2 |
---|
342 | * Whether to use K2 prior. |
---|
343 | * </pre> |
---|
344 | * |
---|
345 | * <pre> -A <alpha> |
---|
346 | * Initial count (alpha) |
---|
347 | * </pre> |
---|
348 | * |
---|
349 | <!-- options-end --> |
---|
350 | * |
---|
351 | * @param options the list of options as an array of strings |
---|
352 | * @throws Exception if an option is not supported |
---|
353 | */ |
---|
354 | public void setOptions(String[] options) throws Exception { |
---|
355 | setUseK2Prior(Utils.getFlag("k2", options)); |
---|
356 | |
---|
357 | super.setOptions(options); |
---|
358 | } // setOptions |
---|
359 | |
---|
360 | /** |
---|
361 | * Gets the current settings of the classifier. |
---|
362 | * |
---|
363 | * @return an array of strings suitable for passing to setOptions |
---|
364 | */ |
---|
365 | public String[] getOptions() { |
---|
366 | String[] superOptions = super.getOptions(); |
---|
367 | String[] options = new String[1 + superOptions.length]; |
---|
368 | int current = 0; |
---|
369 | |
---|
370 | if (isUseK2Prior()) |
---|
371 | options[current++] = "-k2"; |
---|
372 | |
---|
373 | // insert options from parent class |
---|
374 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
---|
375 | options[current++] = superOptions[iOption]; |
---|
376 | } |
---|
377 | |
---|
378 | // Fill up rest with empty strings, not nulls! |
---|
379 | while (current < options.length) { |
---|
380 | options[current++] = ""; |
---|
381 | } |
---|
382 | |
---|
383 | return options; |
---|
384 | } // getOptions |
---|
385 | |
---|
386 | /** |
---|
387 | * Returns the revision string. |
---|
388 | * |
---|
389 | * @return the revision |
---|
390 | */ |
---|
391 | public String getRevision() { |
---|
392 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
393 | } |
---|
394 | } // class MultiNomialBMAEstimator |
---|