source: branches/MetisMQI/src/main/java/weka/classifiers/bayes/NaiveBayesUpdateable.java @ 29

Last change on this file since 29 was 29, checked in by gnappo, 14 years ago

Taggata versione per la demo e aggiunto branch.

File size: 4.4 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    NaiveBayesUpdateable.java
19 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.bayes;
24
25import weka.classifiers.UpdateableClassifier;
26import weka.core.RevisionUtils;
27import weka.core.TechnicalInformation;
28
29/**
30 <!-- globalinfo-start -->
31 * Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.<br/>
32 * This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.<br/>
33 * <br/>
34 * For more information on Naive Bayes classifiers, see<br/>
35 * <br/>
36 * George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995.
37 * <p/>
38 <!-- globalinfo-end -->
39 *
40 <!-- technical-bibtex-start -->
41 * BibTeX:
42 * <pre>
43 * &#64;inproceedings{John1995,
44 *    address = {San Mateo},
45 *    author = {George H. John and Pat Langley},
46 *    booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence},
47 *    pages = {338-345},
48 *    publisher = {Morgan Kaufmann},
49 *    title = {Estimating Continuous Distributions in Bayesian Classifiers},
50 *    year = {1995}
51 * }
52 * </pre>
53 * <p/>
54 <!-- technical-bibtex-end -->
55 *
56 <!-- options-start -->
57 * Valid options are: <p/>
58 *
59 * <pre> -K
60 *  Use kernel density estimator rather than normal
61 *  distribution for numeric attributes</pre>
62 *
63 * <pre> -D
64 *  Use supervised discretization to process numeric attributes
65 * </pre>
66 *
67 * <pre> -O
68 *  Display model in old format (good when there are many classes)
69 * </pre>
70 *
71 <!-- options-end -->
72 *
73 * @author Len Trigg (trigg@cs.waikato.ac.nz)
74 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
75 * @version $Revision: 1.11 $
76 */
77public class NaiveBayesUpdateable extends NaiveBayes
78  implements UpdateableClassifier {
79 
80  /** for serialization */
81  static final long serialVersionUID = -5354015843807192221L;
82 
83  /**
84   * Returns a string describing this classifier
85   * @return a description of the classifier suitable for
86   * displaying in the explorer/experimenter gui
87   */
88  public String globalInfo() {
89    return "Class for a Naive Bayes classifier using estimator classes. This is the "
90      +"updateable version of NaiveBayes.\n"
91      +"This classifier will use a default precision of 0.1 for numeric attributes "
92      +"when buildClassifier is called with zero training instances.\n\n"
93      +"For more information on Naive Bayes classifiers, see\n\n"
94      + getTechnicalInformation().toString();
95  }
96
97  /**
98   * Returns an instance of a TechnicalInformation object, containing
99   * detailed information about the technical background of this class,
100   * e.g., paper reference or book this class is based on.
101   *
102   * @return the technical information about this class
103   */
104  public TechnicalInformation getTechnicalInformation() {
105    return super.getTechnicalInformation();
106  }
107
108  /**
109   * Set whether supervised discretization is to be used.
110   *
111   * @param newblah true if supervised discretization is to be used.
112   */
113  public void setUseSupervisedDiscretization(boolean newblah) {
114
115    if (newblah) {
116      throw new IllegalArgumentException("Can't use discretization " + 
117                                         "in NaiveBayesUpdateable!");
118    }
119    m_UseDiscretization = false;
120  }
121 
122  /**
123   * Returns the revision string.
124   *
125   * @return            the revision
126   */
127  public String getRevision() {
128    return RevisionUtils.extract("$Revision: 1.11 $");
129  }
130
131  /**
132   * Main method for testing this class.
133   *
134   * @param argv the options
135   */
136  public static void main(String [] argv) {
137    runClassifier(new NaiveBayesUpdateable(), argv);
138  }
139}
140
Note: See TracBrowser for help on using the repository browser.