[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * HNB.java |
---|
| 19 | * Copyright (C) 2004 Liangxiao Jiang |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.bayes; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.Classifier; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.TechnicalInformation; |
---|
| 31 | import weka.core.TechnicalInformationHandler; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | import weka.core.Capabilities.Capability; |
---|
| 34 | import weka.core.TechnicalInformation.Field; |
---|
| 35 | import weka.core.TechnicalInformation.Type; |
---|
| 36 | |
---|
| 37 | /** |
---|
| 38 | <!-- globalinfo-start --> |
---|
| 39 | * Contructs Hidden Naive Bayes classification model with high classification accuracy and AUC.<br/> |
---|
| 40 | * <br/> |
---|
| 41 | * For more information refer to:<br/> |
---|
| 42 | * <br/> |
---|
| 43 | * H. Zhang, L. Jiang, J. Su: Hidden Naive Bayes. In: Twentieth National Conference on Artificial Intelligence, 919-924, 2005. |
---|
| 44 | * <p/> |
---|
| 45 | <!-- globalinfo-end --> |
---|
| 46 | * |
---|
| 47 | <!-- technical-bibtex-start --> |
---|
| 48 | * BibTeX: |
---|
| 49 | * <pre> |
---|
| 50 | * @inproceedings{Zhang2005, |
---|
| 51 | * author = {H. Zhang and L. Jiang and J. Su}, |
---|
| 52 | * booktitle = {Twentieth National Conference on Artificial Intelligence}, |
---|
| 53 | * pages = {919-924}, |
---|
| 54 | * publisher = {AAAI Press}, |
---|
| 55 | * title = {Hidden Naive Bayes}, |
---|
| 56 | * year = {2005} |
---|
| 57 | * } |
---|
| 58 | * </pre> |
---|
| 59 | * <p/> |
---|
| 60 | <!-- technical-bibtex-end --> |
---|
| 61 | * |
---|
| 62 | <!-- options-start --> |
---|
| 63 | * Valid options are: <p/> |
---|
| 64 | * |
---|
| 65 | * <pre> -D |
---|
| 66 | * If set, classifier is run in debug mode and |
---|
| 67 | * may output additional info to the console</pre> |
---|
| 68 | * |
---|
| 69 | <!-- options-end --> |
---|
| 70 | * |
---|
| 71 | * @author H. Zhang (hzhang@unb.ca) |
---|
| 72 | * @author Liangxiao Jiang (ljiang@cug.edu.cn) |
---|
| 73 | * @version $Revision: 5928 $ |
---|
| 74 | */ |
---|
| 75 | public class HNB |
---|
| 76 | extends AbstractClassifier |
---|
| 77 | implements TechnicalInformationHandler { |
---|
| 78 | |
---|
| 79 | /** for serialization */ |
---|
| 80 | static final long serialVersionUID = -4503874444306113214L; |
---|
| 81 | |
---|
| 82 | /** The number of each class value occurs in the dataset */ |
---|
| 83 | private double [] m_ClassCounts; |
---|
| 84 | |
---|
| 85 | /** The number of class and two attributes values occurs in the dataset */ |
---|
| 86 | private double [][][] m_ClassAttAttCounts; |
---|
| 87 | |
---|
| 88 | /** The number of values for each attribute in the dataset */ |
---|
| 89 | private int [] m_NumAttValues; |
---|
| 90 | |
---|
| 91 | /** The number of values for all attributes in the dataset */ |
---|
| 92 | private int m_TotalAttValues; |
---|
| 93 | |
---|
| 94 | /** The number of classes in the dataset */ |
---|
| 95 | private int m_NumClasses; |
---|
| 96 | |
---|
| 97 | /** The number of attributes including class in the dataset */ |
---|
| 98 | private int m_NumAttributes; |
---|
| 99 | |
---|
| 100 | /** The number of instances in the dataset */ |
---|
| 101 | private int m_NumInstances; |
---|
| 102 | |
---|
| 103 | /** The index of the class attribute in the dataset */ |
---|
| 104 | private int m_ClassIndex; |
---|
| 105 | |
---|
| 106 | /** The starting index of each attribute in the dataset */ |
---|
| 107 | private int[] m_StartAttIndex; |
---|
| 108 | |
---|
| 109 | /** The 2D array of conditional mutual information of each pair attributes */ |
---|
| 110 | private double[][] m_condiMutualInfo; |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Returns a string describing this classifier. |
---|
| 114 | * |
---|
| 115 | * @return a description of the data generator suitable for |
---|
| 116 | * displaying in the explorer/experimenter gui |
---|
| 117 | */ |
---|
| 118 | public String globalInfo() { |
---|
| 119 | |
---|
| 120 | return |
---|
| 121 | "Contructs Hidden Naive Bayes classification model with high " |
---|
| 122 | + "classification accuracy and AUC.\n\n" |
---|
| 123 | + "For more information refer to:\n\n" |
---|
| 124 | + getTechnicalInformation().toString(); |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | /** |
---|
| 128 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 129 | * detailed information about the technical background of this class, |
---|
| 130 | * e.g., paper reference or book this class is based on. |
---|
| 131 | * |
---|
| 132 | * @return the technical information about this class |
---|
| 133 | */ |
---|
| 134 | public TechnicalInformation getTechnicalInformation() { |
---|
| 135 | TechnicalInformation result; |
---|
| 136 | |
---|
| 137 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 138 | result.setValue(Field.AUTHOR, "H. Zhang and L. Jiang and J. Su"); |
---|
| 139 | result.setValue(Field.TITLE, "Hidden Naive Bayes"); |
---|
| 140 | result.setValue(Field.BOOKTITLE, "Twentieth National Conference on Artificial Intelligence"); |
---|
| 141 | result.setValue(Field.YEAR, "2005"); |
---|
| 142 | result.setValue(Field.PAGES, "919-924"); |
---|
| 143 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
| 144 | |
---|
| 145 | return result; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * Returns default capabilities of the classifier. |
---|
| 150 | * |
---|
| 151 | * @return the capabilities of this classifier |
---|
| 152 | */ |
---|
| 153 | public Capabilities getCapabilities() { |
---|
| 154 | Capabilities result = super.getCapabilities(); |
---|
| 155 | result.disableAll(); |
---|
| 156 | |
---|
| 157 | // attributes |
---|
| 158 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 159 | |
---|
| 160 | // class |
---|
| 161 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 162 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 163 | |
---|
| 164 | return result; |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | /** |
---|
| 168 | * Generates the classifier. |
---|
| 169 | * |
---|
| 170 | * @param instances set of instances serving as training data |
---|
| 171 | * @exception Exception if the classifier has not been generated successfully |
---|
| 172 | */ |
---|
| 173 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 174 | |
---|
| 175 | // can classifier handle the data? |
---|
| 176 | getCapabilities().testWithFail(instances); |
---|
| 177 | |
---|
| 178 | // remove instances with missing class |
---|
| 179 | instances = new Instances(instances); |
---|
| 180 | instances.deleteWithMissingClass(); |
---|
| 181 | |
---|
| 182 | // reset variable |
---|
| 183 | m_NumClasses = instances.numClasses(); |
---|
| 184 | m_ClassIndex = instances.classIndex(); |
---|
| 185 | m_NumAttributes = instances.numAttributes(); |
---|
| 186 | m_NumInstances = instances.numInstances(); |
---|
| 187 | m_TotalAttValues = 0; |
---|
| 188 | |
---|
| 189 | // allocate space for attribute reference arrays |
---|
| 190 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
| 191 | m_NumAttValues = new int[m_NumAttributes]; |
---|
| 192 | |
---|
| 193 | // set the starting index of each attribute and the number of values for |
---|
| 194 | // each attribute and the total number of values for all attributes (not including class). |
---|
| 195 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
| 196 | if(i != m_ClassIndex) { |
---|
| 197 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
| 198 | m_NumAttValues[i] = instances.attribute(i).numValues(); |
---|
| 199 | m_TotalAttValues += m_NumAttValues[i]; |
---|
| 200 | } |
---|
| 201 | else { |
---|
| 202 | m_StartAttIndex[i] = -1; |
---|
| 203 | m_NumAttValues[i] = m_NumClasses; |
---|
| 204 | } |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | // allocate space for counts and frequencies |
---|
| 208 | m_ClassCounts = new double[m_NumClasses]; |
---|
| 209 | m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
| 210 | |
---|
| 211 | // Calculate the counts |
---|
| 212 | for(int k = 0; k < m_NumInstances; k++) { |
---|
| 213 | int classVal=(int)instances.instance(k).classValue(); |
---|
| 214 | m_ClassCounts[classVal] ++; |
---|
| 215 | int[] attIndex = new int[m_NumAttributes]; |
---|
| 216 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
| 217 | if(i == m_ClassIndex) |
---|
| 218 | attIndex[i] = -1; |
---|
| 219 | else |
---|
| 220 | attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i); |
---|
| 221 | } |
---|
| 222 | for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
| 223 | if(attIndex[Att1] == -1) continue; |
---|
| 224 | for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
| 225 | if((attIndex[Att2] != -1)) { |
---|
| 226 | m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++; |
---|
| 227 | } |
---|
| 228 | } |
---|
| 229 | } |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | //compute conditional mutual information of each pair attributes (not including class) |
---|
| 233 | m_condiMutualInfo=new double[m_NumAttributes][m_NumAttributes]; |
---|
| 234 | for(int son=0;son<m_NumAttributes;son++){ |
---|
| 235 | if(son == m_ClassIndex) continue; |
---|
| 236 | for(int parent=0;parent<m_NumAttributes;parent++){ |
---|
| 237 | if(parent == m_ClassIndex || son==parent) continue; |
---|
| 238 | m_condiMutualInfo[son][parent]=conditionalMutualInfo(son,parent); |
---|
| 239 | } |
---|
| 240 | } |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Computes conditional mutual information between a pair of attributes. |
---|
| 245 | * |
---|
| 246 | * @param son the son attribute |
---|
| 247 | * @param parent the parent attribute |
---|
| 248 | * @return the conditional mutual information between son and parent given class |
---|
| 249 | * @throws Exception if computation fails |
---|
| 250 | */ |
---|
| 251 | private double conditionalMutualInfo(int son, int parent) throws Exception{ |
---|
| 252 | |
---|
| 253 | double CondiMutualInfo=0; |
---|
| 254 | int sIndex=m_StartAttIndex[son]; |
---|
| 255 | int pIndex=m_StartAttIndex[parent]; |
---|
| 256 | double[] PriorsClass = new double[m_NumClasses]; |
---|
| 257 | double[][] PriorsClassSon=new double[m_NumClasses][m_NumAttValues[son]]; |
---|
| 258 | double[][] PriorsClassParent=new double[m_NumClasses][m_NumAttValues[parent]]; |
---|
| 259 | double[][][] PriorsClassParentSon=new double[m_NumClasses][m_NumAttValues[parent]][m_NumAttValues[son]]; |
---|
| 260 | |
---|
| 261 | for(int i=0;i<m_NumClasses;i++){ |
---|
| 262 | PriorsClass[i]=m_ClassCounts[i]/m_NumInstances; |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | for(int i=0;i<m_NumClasses;i++){ |
---|
| 266 | for(int j=0;j<m_NumAttValues[son];j++){ |
---|
| 267 | PriorsClassSon[i][j]=m_ClassAttAttCounts[i][sIndex+j][sIndex+j]/m_NumInstances; |
---|
| 268 | } |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | for(int i=0;i<m_NumClasses;i++){ |
---|
| 272 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
| 273 | PriorsClassParent[i][j]=m_ClassAttAttCounts[i][pIndex+j][pIndex+j]/m_NumInstances; |
---|
| 274 | } |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | for(int i=0;i<m_NumClasses;i++){ |
---|
| 278 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
| 279 | for(int k=0;k<m_NumAttValues[son];k++){ |
---|
| 280 | PriorsClassParentSon[i][j][k]=m_ClassAttAttCounts[i][pIndex+j][sIndex+k]/m_NumInstances; |
---|
| 281 | } |
---|
| 282 | } |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | for(int i=0;i<m_NumClasses;i++){ |
---|
| 286 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
| 287 | for(int k=0;k<m_NumAttValues[son];k++){ |
---|
| 288 | CondiMutualInfo+=PriorsClassParentSon[i][j][k]*log2(PriorsClassParentSon[i][j][k]*PriorsClass[i],PriorsClassParent[i][j]*PriorsClassSon[i][k]); |
---|
| 289 | } |
---|
| 290 | } |
---|
| 291 | } |
---|
| 292 | return CondiMutualInfo; |
---|
| 293 | } |
---|
| 294 | |
---|
| 295 | /** |
---|
| 296 | * compute the logarithm whose base is 2. |
---|
| 297 | * |
---|
| 298 | * @param x numerator of the fraction. |
---|
| 299 | * @param y denominator of the fraction. |
---|
| 300 | * @return the natual logarithm of this fraction. |
---|
| 301 | */ |
---|
| 302 | private double log2(double x,double y){ |
---|
| 303 | |
---|
| 304 | if(x<1e-6||y<1e-6) |
---|
| 305 | return 0.0; |
---|
| 306 | else |
---|
| 307 | return Math.log(x/y)/Math.log(2); |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | /** |
---|
| 311 | * Calculates the class membership probabilities for the given test instance |
---|
| 312 | * |
---|
| 313 | * @param instance the instance to be classified |
---|
| 314 | * @return predicted class probability distribution |
---|
| 315 | * @exception Exception if there is a problem generating the prediction |
---|
| 316 | */ |
---|
| 317 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 318 | |
---|
| 319 | //Definition of local variables |
---|
| 320 | double[] probs = new double[m_NumClasses]; |
---|
| 321 | int sIndex; |
---|
| 322 | double prob; |
---|
| 323 | double condiMutualInfoSum; |
---|
| 324 | |
---|
| 325 | // store instance's att values in an int array |
---|
| 326 | int[] attIndex = new int[m_NumAttributes]; |
---|
| 327 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
| 328 | if(att == m_ClassIndex) |
---|
| 329 | attIndex[att] = -1; |
---|
| 330 | else |
---|
| 331 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | // calculate probabilities for each possible class value |
---|
| 335 | for(int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
| 336 | probs[classVal]=(m_ClassCounts[classVal]+1.0/m_NumClasses)/(m_NumInstances+1.0); |
---|
| 337 | for(int son = 0; son < m_NumAttributes; son++) { |
---|
| 338 | if(attIndex[son]==-1) continue; |
---|
| 339 | sIndex=attIndex[son]; |
---|
| 340 | attIndex[son]=-1; |
---|
| 341 | prob=0; |
---|
| 342 | condiMutualInfoSum=0; |
---|
| 343 | for(int parent=0; parent<m_NumAttributes; parent++) { |
---|
| 344 | if(attIndex[parent]==-1) continue; |
---|
| 345 | condiMutualInfoSum+=m_condiMutualInfo[son][parent]; |
---|
| 346 | prob+=m_condiMutualInfo[son][parent]*(m_ClassAttAttCounts[classVal][attIndex[parent]][sIndex]+1.0/m_NumAttValues[son])/(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0); |
---|
| 347 | } |
---|
| 348 | if(condiMutualInfoSum>0){ |
---|
| 349 | prob=prob/condiMutualInfoSum; |
---|
| 350 | probs[classVal] *= prob; |
---|
| 351 | } |
---|
| 352 | else{ |
---|
| 353 | prob=(m_ClassAttAttCounts[classVal][sIndex][sIndex]+1.0/m_NumAttValues[son])/(m_ClassCounts[classVal]+1.0); |
---|
| 354 | probs[classVal]*= prob; |
---|
| 355 | } |
---|
| 356 | attIndex[son] = sIndex; |
---|
| 357 | } |
---|
| 358 | } |
---|
| 359 | Utils.normalize(probs); |
---|
| 360 | return probs; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /** |
---|
| 364 | * returns a string representation of the classifier |
---|
| 365 | * |
---|
| 366 | * @return a representation of the classifier |
---|
| 367 | */ |
---|
| 368 | public String toString() { |
---|
| 369 | |
---|
| 370 | return "HNB (Hidden Naive Bayes)"; |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * Returns the revision string. |
---|
| 375 | * |
---|
| 376 | * @return the revision |
---|
| 377 | */ |
---|
| 378 | public String getRevision() { |
---|
| 379 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 380 | } |
---|
| 381 | |
---|
| 382 | /** |
---|
| 383 | * Main method for testing this class. |
---|
| 384 | * |
---|
| 385 | * @param args the options |
---|
| 386 | */ |
---|
| 387 | public static void main(String[] args) { |
---|
| 388 | runClassifier(new HNB(), args); |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | |
---|