/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ComplementNaiveBayes.java
* Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
/**
* Class for building and using a Complement class Naive Bayes classifier.
*
* For more information see,
*
* Jason D. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In: ICML, 616-623, 2003.
*
* P.S.: TF, IDF and length normalization transforms, as described in the paper, can be performed through weka.filters.unsupervised.StringToWordVector.
*
* @inproceedings{Rennie2003, * author = {Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger}, * booktitle = {ICML}, * pages = {616-623}, * publisher = {AAAI Press}, * title = {Tackling the Poor Assumptions of Naive Bayes Text Classifiers}, * year = {2003} * } ** * * Valid options are: * *
-N * Normalize the word weights for each class ** *
-S * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). ** * * @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class ComplementNaiveBayes extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 7246302925903086397L; /** Weight of words for each class. The weight is actually the log of the probability of a word (w) given a class (c) (i.e. log(Pr[w|c])). The format of the matrix is: wordWeights[class][wordAttribute] */ private double[][] wordWeights; /** Holds the smoothing value to avoid word probabilities of zero.
-N * Normalize the word weights for each class ** *
-S * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). ** * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setNormalizeWordWeights(Utils.getFlag('N', options)); String val = Utils.getOption('S', options); if(val.length()!=0) setSmoothingParameter(Double.parseDouble(val)); else setSmoothingParameter(1.0); } /** * Returns true if the word weights for each class are to be normalized * * @return true if the word weights are normalized */ public boolean getNormalizeWordWeights() { return m_normalizeWordWeights; } /** * Sets whether if the word weights for each class should be normalized * * @param doNormalize whether the word weights are to be normalized */ public void setNormalizeWordWeights(boolean doNormalize) { m_normalizeWordWeights = doNormalize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String normalizeWordWeightsTipText() { return "Normalizes the word weights for each class."; } /** * Gets the smoothing value to be used to avoid zero WordGivenClass * probabilities. * * @return the smoothing value */ public double getSmoothingParameter() { return smoothingParameter; } /** * Sets the smoothing value used to avoid zero WordGivenClass probabilities * * @param val the new smooting value */ public void setSmoothingParameter(double val) { smoothingParameter = val; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String smoothingParameterTipText() { return "Sets the smoothing parameter to avoid zero WordGivenClass "+ "probabilities (default=1.0)."; } /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a Complement class Naive Bayes "+ "classifier.\n\nFor more information see, \n\n"+ getTechnicalInformation().toString() + "\n\n" + "P.S.: TF, IDF and length normalization transforms, as "+ "described in the paper, can be performed through "+ "weka.filters.unsupervised.StringToWordVector."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger"); result.setValue(Field.TITLE, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers"); result.setValue(Field.BOOKTITLE, "ICML"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.PAGES, "616-623"); result.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); numClasses = instances.numClasses(); int numAttributes = instances.numAttributes(); header = new Instances(instances, 0); double [][] ocrnceOfWordInClass = new double[numClasses][numAttributes]; wordWeights = new double[numClasses][numAttributes]; //double [] docsPerClass = new double[numClasses]; double[] wordsPerClass = new double[numClasses]; double totalWordOccurrences = 0; double sumOfSmoothingParams = (numAttributes-1)*smoothingParameter; int classIndex = instances.instance(0).classIndex(); Instance instance; int docClass; double numOccurrences; java.util.Enumeration enumInsts = instances.enumerateInstances(); while (enumInsts.hasMoreElements()) { instance = (Instance) enumInsts.nextElement(); docClass = (int)instance.value(classIndex); //docsPerClass[docClass] += instance.weight(); for(int a = 0; a
*
* For more information see section 4.4 of the paper mentioned above
* in the classifiers description.
*
* @param instance the instance to classify
* @return the index of the class the instance is most likely to belong.
* @throws Exception if the classifier has not been built yet.
*/
public double classifyInstance(Instance instance) throws Exception {
if(wordWeights==null)
throw new Exception("Error. The classifier has not been built "+
"properly.");
double [] valueForClass = new double[numClasses];
double sumOfClassValues=0;
for(int c=0; c