[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Evaluation.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.evaluation.NominalPrediction; |
---|
| 26 | import weka.classifiers.evaluation.NumericPrediction; |
---|
| 27 | import weka.classifiers.evaluation.ThresholdCurve; |
---|
| 28 | import weka.classifiers.evaluation.output.prediction.AbstractOutput; |
---|
| 29 | import weka.classifiers.evaluation.output.prediction.PlainText; |
---|
| 30 | import weka.classifiers.pmml.consumer.PMMLClassifier; |
---|
| 31 | import weka.classifiers.xml.XMLClassifier; |
---|
| 32 | import weka.core.Drawable; |
---|
| 33 | import weka.core.FastVector; |
---|
| 34 | import weka.core.Instance; |
---|
| 35 | import weka.core.Instances; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.OptionHandler; |
---|
| 38 | import weka.core.RevisionHandler; |
---|
| 39 | import weka.core.RevisionUtils; |
---|
| 40 | import weka.core.Summarizable; |
---|
| 41 | import weka.core.Utils; |
---|
| 42 | import weka.core.Version; |
---|
| 43 | import weka.core.converters.ConverterUtils.DataSink; |
---|
| 44 | import weka.core.converters.ConverterUtils.DataSource; |
---|
| 45 | import weka.core.pmml.PMMLFactory; |
---|
| 46 | import weka.core.pmml.PMMLModel; |
---|
| 47 | import weka.core.xml.KOML; |
---|
| 48 | import weka.core.xml.XMLOptions; |
---|
| 49 | import weka.core.xml.XMLSerialization; |
---|
| 50 | import weka.estimators.UnivariateKernelEstimator; |
---|
| 51 | |
---|
| 52 | import java.beans.BeanInfo; |
---|
| 53 | import java.beans.Introspector; |
---|
| 54 | import java.beans.MethodDescriptor; |
---|
| 55 | import java.io.BufferedInputStream; |
---|
| 56 | import java.io.BufferedOutputStream; |
---|
| 57 | import java.io.BufferedReader; |
---|
| 58 | import java.io.FileInputStream; |
---|
| 59 | import java.io.FileOutputStream; |
---|
| 60 | import java.io.FileReader; |
---|
| 61 | import java.io.InputStream; |
---|
| 62 | import java.io.ObjectInputStream; |
---|
| 63 | import java.io.ObjectOutputStream; |
---|
| 64 | import java.io.OutputStream; |
---|
| 65 | import java.io.Reader; |
---|
| 66 | import java.lang.reflect.Method; |
---|
| 67 | import java.util.Date; |
---|
| 68 | import java.util.Enumeration; |
---|
| 69 | import java.util.Random; |
---|
| 70 | import java.util.zip.GZIPInputStream; |
---|
| 71 | import java.util.zip.GZIPOutputStream; |
---|
| 72 | |
---|
| 73 | /** |
---|
| 74 | * Class for evaluating machine learning models. <p/> |
---|
| 75 | * |
---|
| 76 | * ------------------------------------------------------------------- <p/> |
---|
| 77 | * |
---|
| 78 | * General options when evaluating a learning scheme from the command-line: <p/> |
---|
| 79 | * |
---|
| 80 | * -t filename <br/> |
---|
| 81 | * Name of the file with the training data. (required) <p/> |
---|
| 82 | * |
---|
| 83 | * -T filename <br/> |
---|
| 84 | * Name of the file with the test data. If missing a cross-validation |
---|
| 85 | * is performed. <p/> |
---|
| 86 | * |
---|
| 87 | * -c index <br/> |
---|
| 88 | * Index of the class attribute (1, 2, ...; default: last). <p/> |
---|
| 89 | * |
---|
| 90 | * -x number <br/> |
---|
| 91 | * The number of folds for the cross-validation (default: 10). <p/> |
---|
| 92 | * |
---|
| 93 | * -no-cv <br/> |
---|
| 94 | * No cross validation. If no test file is provided, no evaluation |
---|
| 95 | * is done. <p/> |
---|
| 96 | * |
---|
| 97 | * -split-percentage percentage <br/> |
---|
| 98 | * Sets the percentage for the train/test set split, e.g., 66. <p/> |
---|
| 99 | * |
---|
| 100 | * -preserve-order <br/> |
---|
| 101 | * Preserves the order in the percentage split instead of randomizing |
---|
| 102 | * the data first with the seed value ('-s'). <p/> |
---|
| 103 | * |
---|
| 104 | * -s seed <br/> |
---|
| 105 | * Random number seed for the cross-validation and percentage split |
---|
| 106 | * (default: 1). <p/> |
---|
| 107 | * |
---|
| 108 | * -m filename <br/> |
---|
| 109 | * The name of a file containing a cost matrix. <p/> |
---|
| 110 | * |
---|
| 111 | * -l filename <br/> |
---|
| 112 | * Loads classifier from the given file. In case the filename ends with ".xml", |
---|
| 113 | * a PMML file is loaded or, if that fails, options are loaded from XML. <p/> |
---|
| 114 | * |
---|
| 115 | * -d filename <br/> |
---|
| 116 | * Saves classifier built from the training data into the given file. In case |
---|
| 117 | * the filename ends with ".xml" the options are saved XML, not the model. <p/> |
---|
| 118 | * |
---|
| 119 | * -v <br/> |
---|
| 120 | * Outputs no statistics for the training data. <p/> |
---|
| 121 | * |
---|
| 122 | * -o <br/> |
---|
| 123 | * Outputs statistics only, not the classifier. <p/> |
---|
| 124 | * |
---|
| 125 | * -i <br/> |
---|
| 126 | * Outputs information-retrieval statistics per class. <p/> |
---|
| 127 | * |
---|
| 128 | * -k <br/> |
---|
| 129 | * Outputs information-theoretic statistics. <p/> |
---|
| 130 | * |
---|
| 131 | * -classifications "weka.classifiers.evaluation.output.prediction.AbstractOutput + options" <br/> |
---|
| 132 | * Uses the specified class for generating the classification output. |
---|
| 133 | * E.g.: weka.classifiers.evaluation.output.prediction.PlainText |
---|
| 134 | * or : weka.classifiers.evaluation.output.prediction.CSV |
---|
| 135 | * |
---|
| 136 | * -p range <br/> |
---|
| 137 | * Outputs predictions for test instances (or the train instances if no test |
---|
| 138 | * instances provided and -no-cv is used), along with the attributes in the specified range |
---|
| 139 | * (and nothing else). Use '-p 0' if no attributes are desired. <p/> |
---|
| 140 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 141 | * |
---|
| 142 | * -distribution <br/> |
---|
| 143 | * Outputs the distribution instead of only the prediction |
---|
| 144 | * in conjunction with the '-p' option (only nominal classes). <p/> |
---|
| 145 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 146 | * |
---|
| 147 | * -r <br/> |
---|
| 148 | * Outputs cumulative margin distribution (and nothing else). <p/> |
---|
| 149 | * |
---|
| 150 | * -g <br/> |
---|
| 151 | * Only for classifiers that implement "Graphable." Outputs |
---|
| 152 | * the graph representation of the classifier (and nothing |
---|
| 153 | * else). <p/> |
---|
| 154 | * |
---|
| 155 | * -xml filename | xml-string <br/> |
---|
| 156 | * Retrieves the options from the XML-data instead of the command line. <p/> |
---|
| 157 | * |
---|
| 158 | * -threshold-file file <br/> |
---|
| 159 | * The file to save the threshold data to. |
---|
| 160 | * The format is determined by the extensions, e.g., '.arff' for ARFF |
---|
| 161 | * format or '.csv' for CSV. <p/> |
---|
| 162 | * |
---|
| 163 | * -threshold-label label <br/> |
---|
| 164 | * The class label to determine the threshold data for |
---|
| 165 | * (default is the first label) <p/> |
---|
| 166 | * |
---|
| 167 | * ------------------------------------------------------------------- <p/> |
---|
| 168 | * |
---|
| 169 | * Example usage as the main of a classifier (called FunkyClassifier): |
---|
| 170 | * <code> <pre> |
---|
| 171 | * public static void main(String [] args) { |
---|
| 172 | * runClassifier(new FunkyClassifier(), args); |
---|
| 173 | * } |
---|
| 174 | * </pre> </code> |
---|
| 175 | * <p/> |
---|
| 176 | * |
---|
| 177 | * ------------------------------------------------------------------ <p/> |
---|
| 178 | * |
---|
| 179 | * Example usage from within an application: |
---|
| 180 | * <code> <pre> |
---|
| 181 | * Instances trainInstances = ... instances got from somewhere |
---|
| 182 | * Instances testInstances = ... instances got from somewhere |
---|
| 183 | * Classifier scheme = ... scheme got from somewhere |
---|
| 184 | * |
---|
| 185 | * Evaluation evaluation = new Evaluation(trainInstances); |
---|
| 186 | * evaluation.evaluateModel(scheme, testInstances); |
---|
| 187 | * System.out.println(evaluation.toSummaryString()); |
---|
| 188 | * </pre> </code> |
---|
| 189 | * |
---|
| 190 | * |
---|
| 191 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 192 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 193 | * @version $Revision: 6041 $ |
---|
| 194 | */ |
---|
| 195 | public class Evaluation |
---|
| 196 | implements Summarizable, RevisionHandler { |
---|
| 197 | |
---|
| 198 | /** The number of classes. */ |
---|
| 199 | protected int m_NumClasses; |
---|
| 200 | |
---|
| 201 | /** The number of folds for a cross-validation. */ |
---|
| 202 | protected int m_NumFolds; |
---|
| 203 | |
---|
| 204 | /** The weight of all incorrectly classified instances. */ |
---|
| 205 | protected double m_Incorrect; |
---|
| 206 | |
---|
| 207 | /** The weight of all correctly classified instances. */ |
---|
| 208 | protected double m_Correct; |
---|
| 209 | |
---|
| 210 | /** The weight of all unclassified instances. */ |
---|
| 211 | protected double m_Unclassified; |
---|
| 212 | |
---|
| 213 | /*** The weight of all instances that had no class assigned to them. */ |
---|
| 214 | protected double m_MissingClass; |
---|
| 215 | |
---|
| 216 | /** The weight of all instances that had a class assigned to them. */ |
---|
| 217 | protected double m_WithClass; |
---|
| 218 | |
---|
| 219 | /** Array for storing the confusion matrix. */ |
---|
| 220 | protected double [][] m_ConfusionMatrix; |
---|
| 221 | |
---|
| 222 | /** The names of the classes. */ |
---|
| 223 | protected String [] m_ClassNames; |
---|
| 224 | |
---|
| 225 | /** Is the class nominal or numeric? */ |
---|
| 226 | protected boolean m_ClassIsNominal; |
---|
| 227 | |
---|
| 228 | /** The prior probabilities of the classes. */ |
---|
| 229 | protected double [] m_ClassPriors; |
---|
| 230 | |
---|
| 231 | /** The sum of counts for priors. */ |
---|
| 232 | protected double m_ClassPriorsSum; |
---|
| 233 | |
---|
| 234 | /** The cost matrix (if given). */ |
---|
| 235 | protected CostMatrix m_CostMatrix; |
---|
| 236 | |
---|
| 237 | /** The total cost of predictions (includes instance weights). */ |
---|
| 238 | protected double m_TotalCost; |
---|
| 239 | |
---|
| 240 | /** Sum of errors. */ |
---|
| 241 | protected double m_SumErr; |
---|
| 242 | |
---|
| 243 | /** Sum of absolute errors. */ |
---|
| 244 | protected double m_SumAbsErr; |
---|
| 245 | |
---|
| 246 | /** Sum of squared errors. */ |
---|
| 247 | protected double m_SumSqrErr; |
---|
| 248 | |
---|
| 249 | /** Sum of class values. */ |
---|
| 250 | protected double m_SumClass; |
---|
| 251 | |
---|
| 252 | /** Sum of squared class values. */ |
---|
| 253 | protected double m_SumSqrClass; |
---|
| 254 | |
---|
| 255 | /*** Sum of predicted values. */ |
---|
| 256 | protected double m_SumPredicted; |
---|
| 257 | |
---|
| 258 | /** Sum of squared predicted values. */ |
---|
| 259 | protected double m_SumSqrPredicted; |
---|
| 260 | |
---|
| 261 | /** Sum of predicted * class values. */ |
---|
| 262 | protected double m_SumClassPredicted; |
---|
| 263 | |
---|
| 264 | /** Sum of absolute errors of the prior. */ |
---|
| 265 | protected double m_SumPriorAbsErr; |
---|
| 266 | |
---|
| 267 | /** Sum of absolute errors of the prior. */ |
---|
| 268 | protected double m_SumPriorSqrErr; |
---|
| 269 | |
---|
| 270 | /** Total Kononenko & Bratko Information. */ |
---|
| 271 | protected double m_SumKBInfo; |
---|
| 272 | |
---|
| 273 | /*** Resolution of the margin histogram. */ |
---|
| 274 | protected static int k_MarginResolution = 500; |
---|
| 275 | |
---|
| 276 | /** Cumulative margin distribution. */ |
---|
| 277 | protected double m_MarginCounts []; |
---|
| 278 | |
---|
| 279 | /** Number of non-missing class training instances seen. */ |
---|
| 280 | protected int m_NumTrainClassVals; |
---|
| 281 | |
---|
| 282 | /** Array containing all numeric training class values seen. */ |
---|
| 283 | protected double [] m_TrainClassVals; |
---|
| 284 | |
---|
| 285 | /** Array containing all numeric training class weights. */ |
---|
| 286 | protected double [] m_TrainClassWeights; |
---|
| 287 | |
---|
| 288 | /** Numeric class estimator for prior. */ |
---|
| 289 | protected UnivariateKernelEstimator m_PriorEstimator; |
---|
| 290 | |
---|
| 291 | /** Whether complexity statistics are available. */ |
---|
| 292 | protected boolean m_ComplexityStatisticsAvailable = true; |
---|
| 293 | |
---|
| 294 | /** |
---|
| 295 | * The minimum probablility accepted from an estimator to avoid |
---|
| 296 | * taking log(0) in Sf calculations. |
---|
| 297 | */ |
---|
| 298 | protected static final double MIN_SF_PROB = Double.MIN_VALUE; |
---|
| 299 | |
---|
| 300 | /** Total entropy of prior predictions. */ |
---|
| 301 | protected double m_SumPriorEntropy; |
---|
| 302 | |
---|
| 303 | /** Total entropy of scheme predictions. */ |
---|
| 304 | protected double m_SumSchemeEntropy; |
---|
| 305 | |
---|
| 306 | /** Whether coverage statistics are available. */ |
---|
| 307 | protected boolean m_CoverageStatisticsAvailable = true; |
---|
| 308 | |
---|
| 309 | /** The confidence level used for coverage statistics. */ |
---|
| 310 | protected double m_ConfLevel = 0.95; |
---|
| 311 | |
---|
| 312 | /** Total size of predicted regions at the given confidence level. */ |
---|
| 313 | protected double m_TotalSizeOfRegions; |
---|
| 314 | |
---|
| 315 | /** Total coverage of test cases at the given confidence level. */ |
---|
| 316 | protected double m_TotalCoverage; |
---|
| 317 | |
---|
| 318 | /** Minimum target value. */ |
---|
| 319 | protected double m_MinTarget; |
---|
| 320 | |
---|
| 321 | /** Maximum target value. */ |
---|
| 322 | protected double m_MaxTarget; |
---|
| 323 | |
---|
| 324 | /** The list of predictions that have been generated (for computing AUC). */ |
---|
| 325 | protected FastVector m_Predictions; |
---|
| 326 | |
---|
| 327 | /** enables/disables the use of priors, e.g., if no training set is |
---|
| 328 | * present in case of de-serialized schemes. */ |
---|
| 329 | protected boolean m_NoPriors = false; |
---|
| 330 | |
---|
| 331 | /** The header of the training set. */ |
---|
| 332 | protected Instances m_Header; |
---|
| 333 | |
---|
| 334 | /** |
---|
| 335 | * Initializes all the counters for the evaluation. |
---|
| 336 | * Use <code>useNoPriors()</code> if the dataset is the test set and you |
---|
| 337 | * can't initialize with the priors from the training set via |
---|
| 338 | * <code>setPriors(Instances)</code>. |
---|
| 339 | * |
---|
| 340 | * @param data set of training instances, to get some header |
---|
| 341 | * information and prior class distribution information |
---|
| 342 | * @throws Exception if the class is not defined |
---|
| 343 | * @see #useNoPriors() |
---|
| 344 | * @see #setPriors(Instances) |
---|
| 345 | */ |
---|
| 346 | public Evaluation(Instances data) throws Exception { |
---|
| 347 | |
---|
| 348 | this(data, null); |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | /** |
---|
| 352 | * Initializes all the counters for the evaluation and also takes a |
---|
| 353 | * cost matrix as parameter. |
---|
| 354 | * Use <code>useNoPriors()</code> if the dataset is the test set and you |
---|
| 355 | * can't initialize with the priors from the training set via |
---|
| 356 | * <code>setPriors(Instances)</code>. |
---|
| 357 | * |
---|
| 358 | * @param data set of training instances, to get some header |
---|
| 359 | * information and prior class distribution information |
---|
| 360 | * @param costMatrix the cost matrix---if null, default costs will be used |
---|
| 361 | * @throws Exception if cost matrix is not compatible with |
---|
| 362 | * data, the class is not defined or the class is numeric |
---|
| 363 | * @see #useNoPriors() |
---|
| 364 | * @see #setPriors(Instances) |
---|
| 365 | */ |
---|
| 366 | public Evaluation(Instances data, CostMatrix costMatrix) |
---|
| 367 | throws Exception { |
---|
| 368 | |
---|
| 369 | m_Header = new Instances(data, 0); |
---|
| 370 | m_NumClasses = data.numClasses(); |
---|
| 371 | m_NumFolds = 1; |
---|
| 372 | m_ClassIsNominal = data.classAttribute().isNominal(); |
---|
| 373 | |
---|
| 374 | if (m_ClassIsNominal) { |
---|
| 375 | m_ConfusionMatrix = new double [m_NumClasses][m_NumClasses]; |
---|
| 376 | m_ClassNames = new String [m_NumClasses]; |
---|
| 377 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 378 | m_ClassNames[i] = data.classAttribute().value(i); |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | m_CostMatrix = costMatrix; |
---|
| 382 | if (m_CostMatrix != null) { |
---|
| 383 | if (!m_ClassIsNominal) { |
---|
| 384 | throw new Exception("Class has to be nominal if cost matrix given!"); |
---|
| 385 | } |
---|
| 386 | if (m_CostMatrix.size() != m_NumClasses) { |
---|
| 387 | throw new Exception("Cost matrix not compatible with data!"); |
---|
| 388 | } |
---|
| 389 | } |
---|
| 390 | m_ClassPriors = new double [m_NumClasses]; |
---|
| 391 | setPriors(data); |
---|
| 392 | m_MarginCounts = new double [k_MarginResolution + 1]; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** |
---|
| 396 | * Returns the header of the underlying dataset. |
---|
| 397 | * |
---|
| 398 | * @return the header information |
---|
| 399 | */ |
---|
| 400 | public Instances getHeader() { |
---|
| 401 | return m_Header; |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | /** |
---|
| 405 | * Returns the area under ROC for those predictions that have been collected |
---|
| 406 | * in the evaluateClassifier(Classifier, Instances) method. Returns |
---|
| 407 | * Utils.missingValue() if the area is not available. |
---|
| 408 | * |
---|
| 409 | * @param classIndex the index of the class to consider as "positive" |
---|
| 410 | * @return the area under the ROC curve or not a number |
---|
| 411 | */ |
---|
| 412 | public double areaUnderROC(int classIndex) { |
---|
| 413 | |
---|
| 414 | // Check if any predictions have been collected |
---|
| 415 | if (m_Predictions == null) { |
---|
| 416 | return Utils.missingValue(); |
---|
| 417 | } else { |
---|
| 418 | ThresholdCurve tc = new ThresholdCurve(); |
---|
| 419 | Instances result = tc.getCurve(m_Predictions, classIndex); |
---|
| 420 | return ThresholdCurve.getROCArea(result); |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | /** |
---|
| 425 | * Calculates the weighted (by class size) AUC. |
---|
| 426 | * |
---|
| 427 | * @return the weighted AUC. |
---|
| 428 | */ |
---|
| 429 | public double weightedAreaUnderROC() { |
---|
| 430 | double[] classCounts = new double[m_NumClasses]; |
---|
| 431 | double classCountSum = 0; |
---|
| 432 | |
---|
| 433 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 434 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 435 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 436 | } |
---|
| 437 | classCountSum += classCounts[i]; |
---|
| 438 | } |
---|
| 439 | |
---|
| 440 | double aucTotal = 0; |
---|
| 441 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 442 | double temp = areaUnderROC(i); |
---|
| 443 | if (!Utils.isMissingValue(temp)) { |
---|
| 444 | aucTotal += (temp * classCounts[i]); |
---|
| 445 | } |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | return aucTotal / classCountSum; |
---|
| 449 | } |
---|
| 450 | |
---|
| 451 | /** |
---|
| 452 | * Returns a copy of the confusion matrix. |
---|
| 453 | * |
---|
| 454 | * @return a copy of the confusion matrix as a two-dimensional array |
---|
| 455 | */ |
---|
| 456 | public double[][] confusionMatrix() { |
---|
| 457 | |
---|
| 458 | double[][] newMatrix = new double[m_ConfusionMatrix.length][0]; |
---|
| 459 | |
---|
| 460 | for (int i = 0; i < m_ConfusionMatrix.length; i++) { |
---|
| 461 | newMatrix[i] = new double[m_ConfusionMatrix[i].length]; |
---|
| 462 | System.arraycopy(m_ConfusionMatrix[i], 0, newMatrix[i], 0, |
---|
| 463 | m_ConfusionMatrix[i].length); |
---|
| 464 | } |
---|
| 465 | return newMatrix; |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | /** |
---|
| 469 | * Performs a (stratified if class is nominal) cross-validation |
---|
| 470 | * for a classifier on a set of instances. Now performs |
---|
| 471 | * a deep copy of the classifier before each call to |
---|
| 472 | * buildClassifier() (just in case the classifier is not |
---|
| 473 | * initialized properly). |
---|
| 474 | * |
---|
| 475 | * @param classifier the classifier with any options set. |
---|
| 476 | * @param data the data on which the cross-validation is to be |
---|
| 477 | * performed |
---|
| 478 | * @param numFolds the number of folds for the cross-validation |
---|
| 479 | * @param random random number generator for randomization |
---|
| 480 | * @param forPredictionsPrinting varargs parameter that, if supplied, is |
---|
| 481 | * expected to hold a weka.classifiers.evaluation.output.prediction.AbstractOutput |
---|
| 482 | * object |
---|
| 483 | * @throws Exception if a classifier could not be generated |
---|
| 484 | * successfully or the class is not defined |
---|
| 485 | */ |
---|
| 486 | public void crossValidateModel(Classifier classifier, |
---|
| 487 | Instances data, int numFolds, Random random, |
---|
| 488 | Object... forPredictionsPrinting) |
---|
| 489 | throws Exception { |
---|
| 490 | |
---|
| 491 | // Make a copy of the data we can reorder |
---|
| 492 | data = new Instances(data); |
---|
| 493 | data.randomize(random); |
---|
| 494 | if (data.classAttribute().isNominal()) { |
---|
| 495 | data.stratify(numFolds); |
---|
| 496 | } |
---|
| 497 | |
---|
| 498 | // We assume that the first element is a |
---|
| 499 | // weka.classifiers.evaluation.output.prediction.AbstractOutput object |
---|
| 500 | AbstractOutput classificationOutput = null; |
---|
| 501 | if (forPredictionsPrinting.length > 0) { |
---|
| 502 | // print the header first |
---|
| 503 | classificationOutput = (AbstractOutput) forPredictionsPrinting[0]; |
---|
| 504 | classificationOutput.setHeader(data); |
---|
| 505 | classificationOutput.printHeader(); |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | // Do the folds |
---|
| 509 | for (int i = 0; i < numFolds; i++) { |
---|
| 510 | Instances train = data.trainCV(numFolds, i, random); |
---|
| 511 | setPriors(train); |
---|
| 512 | Classifier copiedClassifier = AbstractClassifier.makeCopy(classifier); |
---|
| 513 | copiedClassifier.buildClassifier(train); |
---|
| 514 | Instances test = data.testCV(numFolds, i); |
---|
| 515 | evaluateModel(copiedClassifier, test, forPredictionsPrinting); |
---|
| 516 | } |
---|
| 517 | m_NumFolds = numFolds; |
---|
| 518 | |
---|
| 519 | if (classificationOutput != null) |
---|
| 520 | classificationOutput.printFooter(); |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | /** |
---|
| 524 | * Performs a (stratified if class is nominal) cross-validation |
---|
| 525 | * for a classifier on a set of instances. |
---|
| 526 | * |
---|
| 527 | * @param classifierString a string naming the class of the classifier |
---|
| 528 | * @param data the data on which the cross-validation is to be |
---|
| 529 | * performed |
---|
| 530 | * @param numFolds the number of folds for the cross-validation |
---|
| 531 | * @param options the options to the classifier. Any options |
---|
| 532 | * @param random the random number generator for randomizing the data |
---|
| 533 | * accepted by the classifier will be removed from this array. |
---|
| 534 | * @throws Exception if a classifier could not be generated |
---|
| 535 | * successfully or the class is not defined |
---|
| 536 | */ |
---|
| 537 | public void crossValidateModel(String classifierString, |
---|
| 538 | Instances data, int numFolds, |
---|
| 539 | String[] options, Random random) |
---|
| 540 | throws Exception { |
---|
| 541 | |
---|
| 542 | crossValidateModel(AbstractClassifier.forName(classifierString, options), |
---|
| 543 | data, numFolds, random); |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | /** |
---|
| 547 | * Evaluates a classifier with the options given in an array of |
---|
| 548 | * strings. <p/> |
---|
| 549 | * |
---|
| 550 | * Valid options are: <p/> |
---|
| 551 | * |
---|
| 552 | * -t filename <br/> |
---|
| 553 | * Name of the file with the training data. (required) <p/> |
---|
| 554 | * |
---|
| 555 | * -T filename <br/> |
---|
| 556 | * Name of the file with the test data. If missing a cross-validation |
---|
| 557 | * is performed. <p/> |
---|
| 558 | * |
---|
| 559 | * -c index <br/> |
---|
| 560 | * Index of the class attribute (1, 2, ...; default: last). <p/> |
---|
| 561 | * |
---|
| 562 | * -x number <br/> |
---|
| 563 | * The number of folds for the cross-validation (default: 10). <p/> |
---|
| 564 | * |
---|
| 565 | * -no-cv <br/> |
---|
| 566 | * No cross validation. If no test file is provided, no evaluation |
---|
| 567 | * is done. <p/> |
---|
| 568 | * |
---|
| 569 | * -split-percentage percentage <br/> |
---|
| 570 | * Sets the percentage for the train/test set split, e.g., 66. <p/> |
---|
| 571 | * |
---|
| 572 | * -preserve-order <br/> |
---|
| 573 | * Preserves the order in the percentage split instead of randomizing |
---|
| 574 | * the data first with the seed value ('-s'). <p/> |
---|
| 575 | * |
---|
| 576 | * -s seed <br/> |
---|
| 577 | * Random number seed for the cross-validation and percentage split |
---|
| 578 | * (default: 1). <p/> |
---|
| 579 | * |
---|
| 580 | * -m filename <br/> |
---|
| 581 | * The name of a file containing a cost matrix. <p/> |
---|
| 582 | * |
---|
| 583 | * -l filename <br/> |
---|
| 584 | * Loads classifier from the given file. In case the filename ends with |
---|
| 585 | * ".xml",a PMML file is loaded or, if that fails, options are loaded from XML. <p/> |
---|
| 586 | * |
---|
| 587 | * -d filename <br/> |
---|
| 588 | * Saves classifier built from the training data into the given file. In case |
---|
| 589 | * the filename ends with ".xml" the options are saved XML, not the model. <p/> |
---|
| 590 | * |
---|
| 591 | * -v <br/> |
---|
| 592 | * Outputs no statistics for the training data. <p/> |
---|
| 593 | * |
---|
| 594 | * -o <br/> |
---|
| 595 | * Outputs statistics only, not the classifier. <p/> |
---|
| 596 | * |
---|
| 597 | * -i <br/> |
---|
| 598 | * Outputs detailed information-retrieval statistics per class. <p/> |
---|
| 599 | * |
---|
| 600 | * -k <br/> |
---|
| 601 | * Outputs information-theoretic statistics. <p/> |
---|
| 602 | * |
---|
| 603 | * -classifications "weka.classifiers.evaluation.output.prediction.AbstractOutput + options" <br/> |
---|
| 604 | * Uses the specified class for generating the classification output. |
---|
| 605 | * E.g.: weka.classifiers.evaluation.output.prediction.PlainText |
---|
| 606 | * or : weka.classifiers.evaluation.output.prediction.CSV |
---|
| 607 | * |
---|
| 608 | * -p range <br/> |
---|
| 609 | * Outputs predictions for test instances (or the train instances if no test |
---|
| 610 | * instances provided and -no-cv is used), along with the attributes in the specified range |
---|
| 611 | * (and nothing else). Use '-p 0' if no attributes are desired. <p/> |
---|
| 612 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 613 | * |
---|
| 614 | * -distribution <br/> |
---|
| 615 | * Outputs the distribution instead of only the prediction |
---|
| 616 | * in conjunction with the '-p' option (only nominal classes). <p/> |
---|
| 617 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 618 | * |
---|
| 619 | * -r <br/> |
---|
| 620 | * Outputs cumulative margin distribution (and nothing else). <p/> |
---|
| 621 | * |
---|
| 622 | * -g <br/> |
---|
| 623 | * Only for classifiers that implement "Graphable." Outputs |
---|
| 624 | * the graph representation of the classifier (and nothing |
---|
| 625 | * else). <p/> |
---|
| 626 | * |
---|
| 627 | * -xml filename | xml-string <br/> |
---|
| 628 | * Retrieves the options from the XML-data instead of the command line. <p/> |
---|
| 629 | * |
---|
| 630 | * -threshold-file file <br/> |
---|
| 631 | * The file to save the threshold data to. |
---|
| 632 | * The format is determined by the extensions, e.g., '.arff' for ARFF |
---|
| 633 | * format or '.csv' for CSV. <p/> |
---|
| 634 | * |
---|
| 635 | * -threshold-label label <br/> |
---|
| 636 | * The class label to determine the threshold data for |
---|
| 637 | * (default is the first label) <p/> |
---|
| 638 | * |
---|
| 639 | * @param classifierString class of machine learning classifier as a string |
---|
| 640 | * @param options the array of string containing the options |
---|
| 641 | * @throws Exception if model could not be evaluated successfully |
---|
| 642 | * @return a string describing the results |
---|
| 643 | */ |
---|
| 644 | public static String evaluateModel(String classifierString, |
---|
| 645 | String [] options) throws Exception { |
---|
| 646 | |
---|
| 647 | Classifier classifier; |
---|
| 648 | |
---|
| 649 | // Create classifier |
---|
| 650 | try { |
---|
| 651 | classifier = |
---|
| 652 | // (Classifier)Class.forName(classifierString).newInstance(); |
---|
| 653 | AbstractClassifier.forName(classifierString, null); |
---|
| 654 | } catch (Exception e) { |
---|
| 655 | throw new Exception("Can't find class with name " |
---|
| 656 | + classifierString + '.'); |
---|
| 657 | } |
---|
| 658 | return evaluateModel(classifier, options); |
---|
| 659 | } |
---|
| 660 | |
---|
| 661 | /** |
---|
| 662 | * A test method for this class. Just extracts the first command line |
---|
| 663 | * argument as a classifier class name and calls evaluateModel. |
---|
| 664 | * @param args an array of command line arguments, the first of which |
---|
| 665 | * must be the class name of a classifier. |
---|
| 666 | */ |
---|
| 667 | public static void main(String [] args) { |
---|
| 668 | |
---|
| 669 | try { |
---|
| 670 | if (args.length == 0) { |
---|
| 671 | throw new Exception("The first argument must be the class name" |
---|
| 672 | + " of a classifier"); |
---|
| 673 | } |
---|
| 674 | String classifier = args[0]; |
---|
| 675 | args[0] = ""; |
---|
| 676 | System.out.println(evaluateModel(classifier, args)); |
---|
| 677 | } catch (Exception ex) { |
---|
| 678 | ex.printStackTrace(); |
---|
| 679 | System.err.println(ex.getMessage()); |
---|
| 680 | } |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | /** |
---|
| 684 | * Evaluates a classifier with the options given in an array of |
---|
| 685 | * strings. <p/> |
---|
| 686 | * |
---|
| 687 | * Valid options are: <p/> |
---|
| 688 | * |
---|
| 689 | * -t name of training file <br/> |
---|
| 690 | * Name of the file with the training data. (required) <p/> |
---|
| 691 | * |
---|
| 692 | * -T name of test file <br/> |
---|
| 693 | * Name of the file with the test data. If missing a cross-validation |
---|
| 694 | * is performed. <p/> |
---|
| 695 | * |
---|
| 696 | * -c class index <br/> |
---|
| 697 | * Index of the class attribute (1, 2, ...; default: last). <p/> |
---|
| 698 | * |
---|
| 699 | * -x number of folds <br/> |
---|
| 700 | * The number of folds for the cross-validation (default: 10). <p/> |
---|
| 701 | * |
---|
| 702 | * -no-cv <br/> |
---|
| 703 | * No cross validation. If no test file is provided, no evaluation |
---|
| 704 | * is done. <p/> |
---|
| 705 | * |
---|
| 706 | * -split-percentage percentage <br/> |
---|
| 707 | * Sets the percentage for the train/test set split, e.g., 66. <p/> |
---|
| 708 | * |
---|
| 709 | * -preserve-order <br/> |
---|
| 710 | * Preserves the order in the percentage split instead of randomizing |
---|
| 711 | * the data first with the seed value ('-s'). <p/> |
---|
| 712 | * |
---|
| 713 | * -s seed <br/> |
---|
| 714 | * Random number seed for the cross-validation and percentage split |
---|
| 715 | * (default: 1). <p/> |
---|
| 716 | * |
---|
| 717 | * -m file with cost matrix <br/> |
---|
| 718 | * The name of a file containing a cost matrix. <p/> |
---|
| 719 | * |
---|
| 720 | * -l filename <br/> |
---|
| 721 | * Loads classifier from the given file. In case the filename ends with |
---|
| 722 | * ".xml",a PMML file is loaded or, if that fails, options are loaded from XML. <p/> |
---|
| 723 | * |
---|
| 724 | * -d filename <br/> |
---|
| 725 | * Saves classifier built from the training data into the given file. In case |
---|
| 726 | * the filename ends with ".xml" the options are saved XML, not the model. <p/> |
---|
| 727 | * |
---|
| 728 | * -v <br/> |
---|
| 729 | * Outputs no statistics for the training data. <p/> |
---|
| 730 | * |
---|
| 731 | * -o <br/> |
---|
| 732 | * Outputs statistics only, not the classifier. <p/> |
---|
| 733 | * |
---|
| 734 | * -i <br/> |
---|
| 735 | * Outputs detailed information-retrieval statistics per class. <p/> |
---|
| 736 | * |
---|
| 737 | * -k <br/> |
---|
| 738 | * Outputs information-theoretic statistics. <p/> |
---|
| 739 | * |
---|
| 740 | * -classifications "weka.classifiers.evaluation.output.prediction.AbstractOutput + options" <br/> |
---|
| 741 | * Uses the specified class for generating the classification output. |
---|
| 742 | * E.g.: weka.classifiers.evaluation.output.prediction.PlainText |
---|
| 743 | * or : weka.classifiers.evaluation.output.prediction.CSV |
---|
| 744 | * |
---|
| 745 | * -p range <br/> |
---|
| 746 | * Outputs predictions for test instances (or the train instances if no test |
---|
| 747 | * instances provided and -no-cv is used), along with the attributes in the specified range |
---|
| 748 | * (and nothing else). Use '-p 0' if no attributes are desired. <p/> |
---|
| 749 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 750 | * |
---|
| 751 | * -distribution <br/> |
---|
| 752 | * Outputs the distribution instead of only the prediction |
---|
| 753 | * in conjunction with the '-p' option (only nominal classes). <p/> |
---|
| 754 | * Deprecated: use "-classifications ..." instead. <p/> |
---|
| 755 | * |
---|
| 756 | * -r <br/> |
---|
| 757 | * Outputs cumulative margin distribution (and nothing else). <p/> |
---|
| 758 | * |
---|
| 759 | * -g <br/> |
---|
| 760 | * Only for classifiers that implement "Graphable." Outputs |
---|
| 761 | * the graph representation of the classifier (and nothing |
---|
| 762 | * else). <p/> |
---|
| 763 | * |
---|
| 764 | * -xml filename | xml-string <br/> |
---|
| 765 | * Retrieves the options from the XML-data instead of the command line. <p/> |
---|
| 766 | * |
---|
| 767 | * @param classifier machine learning classifier |
---|
| 768 | * @param options the array of string containing the options |
---|
| 769 | * @throws Exception if model could not be evaluated successfully |
---|
| 770 | * @return a string describing the results |
---|
| 771 | */ |
---|
| 772 | public static String evaluateModel(Classifier classifier, |
---|
| 773 | String [] options) throws Exception { |
---|
| 774 | |
---|
| 775 | Instances train = null, tempTrain, test = null, template = null; |
---|
| 776 | int seed = 1, folds = 10, classIndex = -1; |
---|
| 777 | boolean noCrossValidation = false; |
---|
| 778 | String trainFileName, testFileName, sourceClass, |
---|
| 779 | classIndexString, seedString, foldsString, objectInputFileName, |
---|
| 780 | objectOutputFileName; |
---|
| 781 | boolean noOutput = false, |
---|
| 782 | trainStatistics = true, |
---|
| 783 | printMargins = false, printComplexityStatistics = false, |
---|
| 784 | printGraph = false, classStatistics = false, printSource = false; |
---|
| 785 | StringBuffer text = new StringBuffer(); |
---|
| 786 | DataSource trainSource = null, testSource = null; |
---|
| 787 | ObjectInputStream objectInputStream = null; |
---|
| 788 | BufferedInputStream xmlInputStream = null; |
---|
| 789 | CostMatrix costMatrix = null; |
---|
| 790 | StringBuffer schemeOptionsText = null; |
---|
| 791 | long trainTimeStart = 0, trainTimeElapsed = 0, |
---|
| 792 | testTimeStart = 0, testTimeElapsed = 0; |
---|
| 793 | String xml = ""; |
---|
| 794 | String[] optionsTmp = null; |
---|
| 795 | Classifier classifierBackup; |
---|
| 796 | Classifier classifierClassifications = null; |
---|
| 797 | int actualClassIndex = -1; // 0-based class index |
---|
| 798 | String splitPercentageString = ""; |
---|
| 799 | int splitPercentage = -1; |
---|
| 800 | boolean preserveOrder = false; |
---|
| 801 | boolean trainSetPresent = false; |
---|
| 802 | boolean testSetPresent = false; |
---|
| 803 | String thresholdFile; |
---|
| 804 | String thresholdLabel; |
---|
| 805 | StringBuffer predsBuff = null; // predictions from cross-validation |
---|
| 806 | AbstractOutput classificationOutput = null; |
---|
| 807 | |
---|
| 808 | // help requested? |
---|
| 809 | if (Utils.getFlag("h", options) || Utils.getFlag("help", options)) { |
---|
| 810 | |
---|
| 811 | // global info requested as well? |
---|
| 812 | boolean globalInfo = Utils.getFlag("synopsis", options) || |
---|
| 813 | Utils.getFlag("info", options); |
---|
| 814 | |
---|
| 815 | throw new Exception("\nHelp requested." |
---|
| 816 | + makeOptionString(classifier, globalInfo)); |
---|
| 817 | } |
---|
| 818 | |
---|
| 819 | try { |
---|
| 820 | // do we get the input from XML instead of normal parameters? |
---|
| 821 | xml = Utils.getOption("xml", options); |
---|
| 822 | if (!xml.equals("")) |
---|
| 823 | options = new XMLOptions(xml).toArray(); |
---|
| 824 | |
---|
| 825 | // is the input model only the XML-Options, i.e. w/o built model? |
---|
| 826 | optionsTmp = new String[options.length]; |
---|
| 827 | for (int i = 0; i < options.length; i++) |
---|
| 828 | optionsTmp[i] = options[i]; |
---|
| 829 | |
---|
| 830 | String tmpO = Utils.getOption('l', optionsTmp); |
---|
| 831 | //if (Utils.getOption('l', optionsTmp).toLowerCase().endsWith(".xml")) { |
---|
| 832 | if (tmpO.endsWith(".xml")) { |
---|
| 833 | // try to load file as PMML first |
---|
| 834 | boolean success = false; |
---|
| 835 | try { |
---|
| 836 | PMMLModel pmmlModel = PMMLFactory.getPMMLModel(tmpO); |
---|
| 837 | if (pmmlModel instanceof PMMLClassifier) { |
---|
| 838 | classifier = ((PMMLClassifier)pmmlModel); |
---|
| 839 | success = true; |
---|
| 840 | } |
---|
| 841 | } catch (IllegalArgumentException ex) { |
---|
| 842 | success = false; |
---|
| 843 | } |
---|
| 844 | if (!success) { |
---|
| 845 | // load options from serialized data ('-l' is automatically erased!) |
---|
| 846 | XMLClassifier xmlserial = new XMLClassifier(); |
---|
| 847 | OptionHandler cl = (OptionHandler) xmlserial.read(Utils.getOption('l', options)); |
---|
| 848 | |
---|
| 849 | // merge options |
---|
| 850 | optionsTmp = new String[options.length + cl.getOptions().length]; |
---|
| 851 | System.arraycopy(cl.getOptions(), 0, optionsTmp, 0, cl.getOptions().length); |
---|
| 852 | System.arraycopy(options, 0, optionsTmp, cl.getOptions().length, options.length); |
---|
| 853 | options = optionsTmp; |
---|
| 854 | } |
---|
| 855 | } |
---|
| 856 | |
---|
| 857 | noCrossValidation = Utils.getFlag("no-cv", options); |
---|
| 858 | // Get basic options (options the same for all schemes) |
---|
| 859 | classIndexString = Utils.getOption('c', options); |
---|
| 860 | if (classIndexString.length() != 0) { |
---|
| 861 | if (classIndexString.equals("first")) |
---|
| 862 | classIndex = 1; |
---|
| 863 | else if (classIndexString.equals("last")) |
---|
| 864 | classIndex = -1; |
---|
| 865 | else |
---|
| 866 | classIndex = Integer.parseInt(classIndexString); |
---|
| 867 | } |
---|
| 868 | trainFileName = Utils.getOption('t', options); |
---|
| 869 | objectInputFileName = Utils.getOption('l', options); |
---|
| 870 | objectOutputFileName = Utils.getOption('d', options); |
---|
| 871 | testFileName = Utils.getOption('T', options); |
---|
| 872 | foldsString = Utils.getOption('x', options); |
---|
| 873 | if (foldsString.length() != 0) { |
---|
| 874 | folds = Integer.parseInt(foldsString); |
---|
| 875 | } |
---|
| 876 | seedString = Utils.getOption('s', options); |
---|
| 877 | if (seedString.length() != 0) { |
---|
| 878 | seed = Integer.parseInt(seedString); |
---|
| 879 | } |
---|
| 880 | if (trainFileName.length() == 0) { |
---|
| 881 | if (objectInputFileName.length() == 0) { |
---|
| 882 | throw new Exception("No training file and no object input file given."); |
---|
| 883 | } |
---|
| 884 | if (testFileName.length() == 0) { |
---|
| 885 | throw new Exception("No training file and no test file given."); |
---|
| 886 | } |
---|
| 887 | } else if ((objectInputFileName.length() != 0) && |
---|
| 888 | ((!(classifier instanceof UpdateableClassifier)) || |
---|
| 889 | (testFileName.length() == 0))) { |
---|
| 890 | throw new Exception("Classifier not incremental, or no " + |
---|
| 891 | "test file provided: can't "+ |
---|
| 892 | "use both train and model file."); |
---|
| 893 | } |
---|
| 894 | try { |
---|
| 895 | if (trainFileName.length() != 0) { |
---|
| 896 | trainSetPresent = true; |
---|
| 897 | trainSource = new DataSource(trainFileName); |
---|
| 898 | } |
---|
| 899 | if (testFileName.length() != 0) { |
---|
| 900 | testSetPresent = true; |
---|
| 901 | testSource = new DataSource(testFileName); |
---|
| 902 | } |
---|
| 903 | if (objectInputFileName.length() != 0) { |
---|
| 904 | if (objectInputFileName.endsWith(".xml")) { |
---|
| 905 | // if this is the case then it means that a PMML classifier was |
---|
| 906 | // successfully loaded earlier in the code |
---|
| 907 | objectInputStream = null; |
---|
| 908 | xmlInputStream = null; |
---|
| 909 | } else { |
---|
| 910 | InputStream is = new FileInputStream(objectInputFileName); |
---|
| 911 | if (objectInputFileName.endsWith(".gz")) { |
---|
| 912 | is = new GZIPInputStream(is); |
---|
| 913 | } |
---|
| 914 | // load from KOML? |
---|
| 915 | if (!(objectInputFileName.endsWith(".koml") && KOML.isPresent()) ) { |
---|
| 916 | objectInputStream = new ObjectInputStream(is); |
---|
| 917 | xmlInputStream = null; |
---|
| 918 | } |
---|
| 919 | else { |
---|
| 920 | objectInputStream = null; |
---|
| 921 | xmlInputStream = new BufferedInputStream(is); |
---|
| 922 | } |
---|
| 923 | } |
---|
| 924 | } |
---|
| 925 | } catch (Exception e) { |
---|
| 926 | throw new Exception("Can't open file " + e.getMessage() + '.'); |
---|
| 927 | } |
---|
| 928 | if (testSetPresent) { |
---|
| 929 | template = test = testSource.getStructure(); |
---|
| 930 | if (classIndex != -1) { |
---|
| 931 | test.setClassIndex(classIndex - 1); |
---|
| 932 | } else { |
---|
| 933 | if ( (test.classIndex() == -1) || (classIndexString.length() != 0) ) |
---|
| 934 | test.setClassIndex(test.numAttributes() - 1); |
---|
| 935 | } |
---|
| 936 | actualClassIndex = test.classIndex(); |
---|
| 937 | } |
---|
| 938 | else { |
---|
| 939 | // percentage split |
---|
| 940 | splitPercentageString = Utils.getOption("split-percentage", options); |
---|
| 941 | if (splitPercentageString.length() != 0) { |
---|
| 942 | if (foldsString.length() != 0) |
---|
| 943 | throw new Exception( |
---|
| 944 | "Percentage split cannot be used in conjunction with " |
---|
| 945 | + "cross-validation ('-x')."); |
---|
| 946 | splitPercentage = Integer.parseInt(splitPercentageString); |
---|
| 947 | if ((splitPercentage <= 0) || (splitPercentage >= 100)) |
---|
| 948 | throw new Exception("Percentage split value needs be >0 and <100."); |
---|
| 949 | } |
---|
| 950 | else { |
---|
| 951 | splitPercentage = -1; |
---|
| 952 | } |
---|
| 953 | preserveOrder = Utils.getFlag("preserve-order", options); |
---|
| 954 | if (preserveOrder) { |
---|
| 955 | if (splitPercentage == -1) |
---|
| 956 | throw new Exception("Percentage split ('-percentage-split') is missing."); |
---|
| 957 | } |
---|
| 958 | // create new train/test sources |
---|
| 959 | if (splitPercentage > 0) { |
---|
| 960 | testSetPresent = true; |
---|
| 961 | Instances tmpInst = trainSource.getDataSet(actualClassIndex); |
---|
| 962 | if (!preserveOrder) |
---|
| 963 | tmpInst.randomize(new Random(seed)); |
---|
| 964 | int trainSize = tmpInst.numInstances() * splitPercentage / 100; |
---|
| 965 | int testSize = tmpInst.numInstances() - trainSize; |
---|
| 966 | Instances trainInst = new Instances(tmpInst, 0, trainSize); |
---|
| 967 | Instances testInst = new Instances(tmpInst, trainSize, testSize); |
---|
| 968 | trainSource = new DataSource(trainInst); |
---|
| 969 | testSource = new DataSource(testInst); |
---|
| 970 | template = test = testSource.getStructure(); |
---|
| 971 | if (classIndex != -1) { |
---|
| 972 | test.setClassIndex(classIndex - 1); |
---|
| 973 | } else { |
---|
| 974 | if ( (test.classIndex() == -1) || (classIndexString.length() != 0) ) |
---|
| 975 | test.setClassIndex(test.numAttributes() - 1); |
---|
| 976 | } |
---|
| 977 | actualClassIndex = test.classIndex(); |
---|
| 978 | } |
---|
| 979 | } |
---|
| 980 | if (trainSetPresent) { |
---|
| 981 | template = train = trainSource.getStructure(); |
---|
| 982 | if (classIndex != -1) { |
---|
| 983 | train.setClassIndex(classIndex - 1); |
---|
| 984 | } else { |
---|
| 985 | if ( (train.classIndex() == -1) || (classIndexString.length() != 0) ) |
---|
| 986 | train.setClassIndex(train.numAttributes() - 1); |
---|
| 987 | } |
---|
| 988 | actualClassIndex = train.classIndex(); |
---|
| 989 | if ((testSetPresent) && !test.equalHeaders(train)) { |
---|
| 990 | throw new IllegalArgumentException("Train and test file not compatible!\n" + test.equalHeadersMsg(train)); |
---|
| 991 | } |
---|
| 992 | } |
---|
| 993 | if (template == null) { |
---|
| 994 | throw new Exception("No actual dataset provided to use as template"); |
---|
| 995 | } |
---|
| 996 | costMatrix = handleCostOption( |
---|
| 997 | Utils.getOption('m', options), template.numClasses()); |
---|
| 998 | |
---|
| 999 | classStatistics = Utils.getFlag('i', options); |
---|
| 1000 | noOutput = Utils.getFlag('o', options); |
---|
| 1001 | trainStatistics = !Utils.getFlag('v', options); |
---|
| 1002 | printComplexityStatistics = Utils.getFlag('k', options); |
---|
| 1003 | printMargins = Utils.getFlag('r', options); |
---|
| 1004 | printGraph = Utils.getFlag('g', options); |
---|
| 1005 | sourceClass = Utils.getOption('z', options); |
---|
| 1006 | printSource = (sourceClass.length() != 0); |
---|
| 1007 | thresholdFile = Utils.getOption("threshold-file", options); |
---|
| 1008 | thresholdLabel = Utils.getOption("threshold-label", options); |
---|
| 1009 | |
---|
| 1010 | String classifications = Utils.getOption("classifications", options); |
---|
| 1011 | String classificationsOld = Utils.getOption("p", options); |
---|
| 1012 | if (classifications.length() > 0) { |
---|
| 1013 | noOutput = true; |
---|
| 1014 | classificationOutput = AbstractOutput.fromCommandline(classifications); |
---|
| 1015 | classificationOutput.setHeader(template); |
---|
| 1016 | } |
---|
| 1017 | // backwards compatible with old "-p range" and "-distribution" options |
---|
| 1018 | else if (classificationsOld.length() > 0) { |
---|
| 1019 | noOutput = true; |
---|
| 1020 | classificationOutput = new PlainText(); |
---|
| 1021 | classificationOutput.setHeader(template); |
---|
| 1022 | if (!classificationsOld.equals("0")) |
---|
| 1023 | classificationOutput.setAttributes(classificationsOld); |
---|
| 1024 | classificationOutput.setOutputDistribution(Utils.getFlag("distribution", options)); |
---|
| 1025 | } |
---|
| 1026 | // -distribution flag needs -p option |
---|
| 1027 | else { |
---|
| 1028 | if (Utils.getFlag("distribution", options)) |
---|
| 1029 | throw new Exception("Cannot print distribution without '-p' option!"); |
---|
| 1030 | } |
---|
| 1031 | |
---|
| 1032 | // if no training file given, we don't have any priors |
---|
| 1033 | if ( (!trainSetPresent) && (printComplexityStatistics) ) |
---|
| 1034 | throw new Exception("Cannot print complexity statistics ('-k') without training file ('-t')!"); |
---|
| 1035 | |
---|
| 1036 | // If a model file is given, we can't process |
---|
| 1037 | // scheme-specific options |
---|
| 1038 | if (objectInputFileName.length() != 0) { |
---|
| 1039 | Utils.checkForRemainingOptions(options); |
---|
| 1040 | } else { |
---|
| 1041 | |
---|
| 1042 | // Set options for classifier |
---|
| 1043 | if (classifier instanceof OptionHandler) { |
---|
| 1044 | for (int i = 0; i < options.length; i++) { |
---|
| 1045 | if (options[i].length() != 0) { |
---|
| 1046 | if (schemeOptionsText == null) { |
---|
| 1047 | schemeOptionsText = new StringBuffer(); |
---|
| 1048 | } |
---|
| 1049 | if (options[i].indexOf(' ') != -1) { |
---|
| 1050 | schemeOptionsText.append('"' + options[i] + "\" "); |
---|
| 1051 | } else { |
---|
| 1052 | schemeOptionsText.append(options[i] + " "); |
---|
| 1053 | } |
---|
| 1054 | } |
---|
| 1055 | } |
---|
| 1056 | ((OptionHandler)classifier).setOptions(options); |
---|
| 1057 | } |
---|
| 1058 | } |
---|
| 1059 | |
---|
| 1060 | Utils.checkForRemainingOptions(options); |
---|
| 1061 | } catch (Exception e) { |
---|
| 1062 | throw new Exception("\nWeka exception: " + e.getMessage() |
---|
| 1063 | + makeOptionString(classifier, false)); |
---|
| 1064 | } |
---|
| 1065 | |
---|
| 1066 | // Setup up evaluation objects |
---|
| 1067 | Evaluation trainingEvaluation = new Evaluation(new Instances(template, 0), costMatrix); |
---|
| 1068 | Evaluation testingEvaluation = new Evaluation(new Instances(template, 0), costMatrix); |
---|
| 1069 | |
---|
| 1070 | // disable use of priors if no training file given |
---|
| 1071 | if (!trainSetPresent) |
---|
| 1072 | testingEvaluation.useNoPriors(); |
---|
| 1073 | |
---|
| 1074 | if (objectInputFileName.length() != 0) { |
---|
| 1075 | // Load classifier from file |
---|
| 1076 | if (objectInputStream != null) { |
---|
| 1077 | classifier = (Classifier) objectInputStream.readObject(); |
---|
| 1078 | // try and read a header (if present) |
---|
| 1079 | Instances savedStructure = null; |
---|
| 1080 | try { |
---|
| 1081 | savedStructure = (Instances) objectInputStream.readObject(); |
---|
| 1082 | } catch (Exception ex) { |
---|
| 1083 | // don't make a fuss |
---|
| 1084 | } |
---|
| 1085 | if (savedStructure != null) { |
---|
| 1086 | // test for compatibility with template |
---|
| 1087 | if (!template.equalHeaders(savedStructure)) { |
---|
| 1088 | throw new Exception("training and test set are not compatible\n" + template.equalHeadersMsg(savedStructure)); |
---|
| 1089 | } |
---|
| 1090 | } |
---|
| 1091 | objectInputStream.close(); |
---|
| 1092 | } |
---|
| 1093 | else if (xmlInputStream != null) { |
---|
| 1094 | // whether KOML is available has already been checked (objectInputStream would null otherwise)! |
---|
| 1095 | classifier = (Classifier) KOML.read(xmlInputStream); |
---|
| 1096 | xmlInputStream.close(); |
---|
| 1097 | } |
---|
| 1098 | } |
---|
| 1099 | |
---|
| 1100 | // backup of fully setup classifier for cross-validation |
---|
| 1101 | classifierBackup = AbstractClassifier.makeCopy(classifier); |
---|
| 1102 | |
---|
| 1103 | // Build the classifier if no object file provided |
---|
| 1104 | if ((classifier instanceof UpdateableClassifier) && |
---|
| 1105 | (testSetPresent || noCrossValidation) && |
---|
| 1106 | (costMatrix == null) && |
---|
| 1107 | (trainSetPresent)) { |
---|
| 1108 | // Build classifier incrementally |
---|
| 1109 | trainingEvaluation.setPriors(train); |
---|
| 1110 | testingEvaluation.setPriors(train); |
---|
| 1111 | trainTimeStart = System.currentTimeMillis(); |
---|
| 1112 | if (objectInputFileName.length() == 0) { |
---|
| 1113 | classifier.buildClassifier(train); |
---|
| 1114 | } |
---|
| 1115 | Instance trainInst; |
---|
| 1116 | while (trainSource.hasMoreElements(train)) { |
---|
| 1117 | trainInst = trainSource.nextElement(train); |
---|
| 1118 | trainingEvaluation.updatePriors(trainInst); |
---|
| 1119 | testingEvaluation.updatePriors(trainInst); |
---|
| 1120 | ((UpdateableClassifier)classifier).updateClassifier(trainInst); |
---|
| 1121 | } |
---|
| 1122 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
| 1123 | } else if (objectInputFileName.length() == 0) { |
---|
| 1124 | // Build classifier in one go |
---|
| 1125 | tempTrain = trainSource.getDataSet(actualClassIndex); |
---|
| 1126 | trainingEvaluation.setPriors(tempTrain); |
---|
| 1127 | testingEvaluation.setPriors(tempTrain); |
---|
| 1128 | trainTimeStart = System.currentTimeMillis(); |
---|
| 1129 | classifier.buildClassifier(tempTrain); |
---|
| 1130 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
| 1131 | } |
---|
| 1132 | |
---|
| 1133 | // backup of fully trained classifier for printing the classifications |
---|
| 1134 | if (classificationOutput != null) |
---|
| 1135 | classifierClassifications = AbstractClassifier.makeCopy(classifier); |
---|
| 1136 | |
---|
| 1137 | // Save the classifier if an object output file is provided |
---|
| 1138 | if (objectOutputFileName.length() != 0) { |
---|
| 1139 | OutputStream os = new FileOutputStream(objectOutputFileName); |
---|
| 1140 | // binary |
---|
| 1141 | if (!(objectOutputFileName.endsWith(".xml") || (objectOutputFileName.endsWith(".koml") && KOML.isPresent()))) { |
---|
| 1142 | if (objectOutputFileName.endsWith(".gz")) { |
---|
| 1143 | os = new GZIPOutputStream(os); |
---|
| 1144 | } |
---|
| 1145 | ObjectOutputStream objectOutputStream = new ObjectOutputStream(os); |
---|
| 1146 | objectOutputStream.writeObject(classifier); |
---|
| 1147 | if (template != null) { |
---|
| 1148 | objectOutputStream.writeObject(template); |
---|
| 1149 | } |
---|
| 1150 | objectOutputStream.flush(); |
---|
| 1151 | objectOutputStream.close(); |
---|
| 1152 | } |
---|
| 1153 | // KOML/XML |
---|
| 1154 | else { |
---|
| 1155 | BufferedOutputStream xmlOutputStream = new BufferedOutputStream(os); |
---|
| 1156 | if (objectOutputFileName.endsWith(".xml")) { |
---|
| 1157 | XMLSerialization xmlSerial = new XMLClassifier(); |
---|
| 1158 | xmlSerial.write(xmlOutputStream, classifier); |
---|
| 1159 | } |
---|
| 1160 | else |
---|
| 1161 | // whether KOML is present has already been checked |
---|
| 1162 | // if not present -> ".koml" is interpreted as binary - see above |
---|
| 1163 | if (objectOutputFileName.endsWith(".koml")) { |
---|
| 1164 | KOML.write(xmlOutputStream, classifier); |
---|
| 1165 | } |
---|
| 1166 | xmlOutputStream.close(); |
---|
| 1167 | } |
---|
| 1168 | } |
---|
| 1169 | |
---|
| 1170 | // If classifier is drawable output string describing graph |
---|
| 1171 | if ((classifier instanceof Drawable) && (printGraph)){ |
---|
| 1172 | return ((Drawable)classifier).graph(); |
---|
| 1173 | } |
---|
| 1174 | |
---|
| 1175 | // Output the classifier as equivalent source |
---|
| 1176 | if ((classifier instanceof Sourcable) && (printSource)){ |
---|
| 1177 | return wekaStaticWrapper((Sourcable) classifier, sourceClass); |
---|
| 1178 | } |
---|
| 1179 | |
---|
| 1180 | // Output model |
---|
| 1181 | if (!(noOutput || printMargins)) { |
---|
| 1182 | if (classifier instanceof OptionHandler) { |
---|
| 1183 | if (schemeOptionsText != null) { |
---|
| 1184 | text.append("\nOptions: "+schemeOptionsText); |
---|
| 1185 | text.append("\n"); |
---|
| 1186 | } |
---|
| 1187 | } |
---|
| 1188 | text.append("\n" + classifier.toString() + "\n"); |
---|
| 1189 | } |
---|
| 1190 | |
---|
| 1191 | if (!printMargins && (costMatrix != null)) { |
---|
| 1192 | text.append("\n=== Evaluation Cost Matrix ===\n\n"); |
---|
| 1193 | text.append(costMatrix.toString()); |
---|
| 1194 | } |
---|
| 1195 | |
---|
| 1196 | // Output test instance predictions only |
---|
| 1197 | if (classificationOutput != null) { |
---|
| 1198 | DataSource source = testSource; |
---|
| 1199 | predsBuff = new StringBuffer(); |
---|
| 1200 | classificationOutput.setBuffer(predsBuff); |
---|
| 1201 | // no test set -> use train set |
---|
| 1202 | if (source == null && noCrossValidation) { |
---|
| 1203 | source = trainSource; |
---|
| 1204 | predsBuff.append("\n=== Predictions on training data ===\n\n"); |
---|
| 1205 | } else { |
---|
| 1206 | predsBuff.append("\n=== Predictions on test data ===\n\n"); |
---|
| 1207 | } |
---|
| 1208 | if (source != null) |
---|
| 1209 | classificationOutput.print(classifierClassifications, source); |
---|
| 1210 | } |
---|
| 1211 | |
---|
| 1212 | // Compute error estimate from training data |
---|
| 1213 | if ((trainStatistics) && (trainSetPresent)) { |
---|
| 1214 | |
---|
| 1215 | if ((classifier instanceof UpdateableClassifier) && |
---|
| 1216 | (testSetPresent) && |
---|
| 1217 | (costMatrix == null)) { |
---|
| 1218 | |
---|
| 1219 | // Classifier was trained incrementally, so we have to |
---|
| 1220 | // reset the source. |
---|
| 1221 | trainSource.reset(); |
---|
| 1222 | |
---|
| 1223 | // Incremental testing |
---|
| 1224 | train = trainSource.getStructure(actualClassIndex); |
---|
| 1225 | testTimeStart = System.currentTimeMillis(); |
---|
| 1226 | Instance trainInst; |
---|
| 1227 | while (trainSource.hasMoreElements(train)) { |
---|
| 1228 | trainInst = trainSource.nextElement(train); |
---|
| 1229 | trainingEvaluation.evaluateModelOnce((Classifier)classifier, trainInst); |
---|
| 1230 | } |
---|
| 1231 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
| 1232 | } else { |
---|
| 1233 | testTimeStart = System.currentTimeMillis(); |
---|
| 1234 | trainingEvaluation.evaluateModel( |
---|
| 1235 | classifier, trainSource.getDataSet(actualClassIndex)); |
---|
| 1236 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
| 1237 | } |
---|
| 1238 | |
---|
| 1239 | // Print the results of the training evaluation |
---|
| 1240 | if (printMargins) { |
---|
| 1241 | return trainingEvaluation.toCumulativeMarginDistributionString(); |
---|
| 1242 | } else { |
---|
| 1243 | if (classificationOutput == null) { |
---|
| 1244 | text.append("\nTime taken to build model: " |
---|
| 1245 | + Utils.doubleToString(trainTimeElapsed / 1000.0,2) |
---|
| 1246 | + " seconds"); |
---|
| 1247 | |
---|
| 1248 | if (splitPercentage > 0) |
---|
| 1249 | text.append("\nTime taken to test model on training split: "); |
---|
| 1250 | else |
---|
| 1251 | text.append("\nTime taken to test model on training data: "); |
---|
| 1252 | text.append(Utils.doubleToString(testTimeElapsed / 1000.0,2) + " seconds"); |
---|
| 1253 | |
---|
| 1254 | if (splitPercentage > 0) |
---|
| 1255 | text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training" |
---|
| 1256 | + " split ===\n", printComplexityStatistics)); |
---|
| 1257 | else |
---|
| 1258 | text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training" |
---|
| 1259 | + " data ===\n", printComplexityStatistics)); |
---|
| 1260 | |
---|
| 1261 | if (template.classAttribute().isNominal()) { |
---|
| 1262 | if (classStatistics) { |
---|
| 1263 | text.append("\n\n" + trainingEvaluation.toClassDetailsString()); |
---|
| 1264 | } |
---|
| 1265 | if (!noCrossValidation) |
---|
| 1266 | text.append("\n\n" + trainingEvaluation.toMatrixString()); |
---|
| 1267 | } |
---|
| 1268 | } |
---|
| 1269 | } |
---|
| 1270 | } |
---|
| 1271 | |
---|
| 1272 | // Compute proper error estimates |
---|
| 1273 | if (testSource != null) { |
---|
| 1274 | // Testing is on the supplied test data |
---|
| 1275 | testSource.reset(); |
---|
| 1276 | test = testSource.getStructure(test.classIndex()); |
---|
| 1277 | Instance testInst; |
---|
| 1278 | while (testSource.hasMoreElements(test)) { |
---|
| 1279 | testInst = testSource.nextElement(test); |
---|
| 1280 | testingEvaluation.evaluateModelOnceAndRecordPrediction( |
---|
| 1281 | (Classifier)classifier, testInst); |
---|
| 1282 | } |
---|
| 1283 | |
---|
| 1284 | if (splitPercentage > 0) { |
---|
| 1285 | if (classificationOutput == null) { |
---|
| 1286 | text.append("\n\n" + testingEvaluation. |
---|
| 1287 | toSummaryString("=== Error on test split ===\n", |
---|
| 1288 | printComplexityStatistics)); |
---|
| 1289 | } |
---|
| 1290 | } else { |
---|
| 1291 | if (classificationOutput == null) { |
---|
| 1292 | text.append("\n\n" + testingEvaluation. |
---|
| 1293 | toSummaryString("=== Error on test data ===\n", |
---|
| 1294 | printComplexityStatistics)); |
---|
| 1295 | } |
---|
| 1296 | } |
---|
| 1297 | |
---|
| 1298 | } else if (trainSource != null) { |
---|
| 1299 | if (!noCrossValidation) { |
---|
| 1300 | // Testing is via cross-validation on training data |
---|
| 1301 | Random random = new Random(seed); |
---|
| 1302 | // use untrained (!) classifier for cross-validation |
---|
| 1303 | classifier = AbstractClassifier.makeCopy(classifierBackup); |
---|
| 1304 | if (classificationOutput == null) { |
---|
| 1305 | testingEvaluation.crossValidateModel(classifier, |
---|
| 1306 | trainSource.getDataSet(actualClassIndex), |
---|
| 1307 | folds, random); |
---|
| 1308 | if (template.classAttribute().isNumeric()) { |
---|
| 1309 | text.append("\n\n\n" + testingEvaluation. |
---|
| 1310 | toSummaryString("=== Cross-validation ===\n", |
---|
| 1311 | printComplexityStatistics)); |
---|
| 1312 | } else { |
---|
| 1313 | text.append("\n\n\n" + testingEvaluation. |
---|
| 1314 | toSummaryString("=== Stratified " + |
---|
| 1315 | "cross-validation ===\n", |
---|
| 1316 | printComplexityStatistics)); |
---|
| 1317 | } |
---|
| 1318 | } else { |
---|
| 1319 | predsBuff = new StringBuffer(); |
---|
| 1320 | classificationOutput.setBuffer(predsBuff); |
---|
| 1321 | predsBuff.append("\n=== Predictions under cross-validation ===\n\n"); |
---|
| 1322 | testingEvaluation.crossValidateModel(classifier, |
---|
| 1323 | trainSource.getDataSet(actualClassIndex), |
---|
| 1324 | folds, random, classificationOutput); |
---|
| 1325 | } |
---|
| 1326 | } |
---|
| 1327 | } |
---|
| 1328 | if (template.classAttribute().isNominal()) { |
---|
| 1329 | if (classStatistics && !noCrossValidation && (classificationOutput == null)) { |
---|
| 1330 | text.append("\n\n" + testingEvaluation.toClassDetailsString()); |
---|
| 1331 | } |
---|
| 1332 | if (!noCrossValidation && (classificationOutput == null)) |
---|
| 1333 | text.append("\n\n" + testingEvaluation.toMatrixString()); |
---|
| 1334 | |
---|
| 1335 | } |
---|
| 1336 | |
---|
| 1337 | // predictions from cross-validation? |
---|
| 1338 | if (predsBuff != null) { |
---|
| 1339 | text.append("\n" + predsBuff); |
---|
| 1340 | } |
---|
| 1341 | |
---|
| 1342 | if ((thresholdFile.length() != 0) && template.classAttribute().isNominal()) { |
---|
| 1343 | int labelIndex = 0; |
---|
| 1344 | if (thresholdLabel.length() != 0) |
---|
| 1345 | labelIndex = template.classAttribute().indexOfValue(thresholdLabel); |
---|
| 1346 | if (labelIndex == -1) |
---|
| 1347 | throw new IllegalArgumentException( |
---|
| 1348 | "Class label '" + thresholdLabel + "' is unknown!"); |
---|
| 1349 | ThresholdCurve tc = new ThresholdCurve(); |
---|
| 1350 | Instances result = tc.getCurve(testingEvaluation.predictions(), labelIndex); |
---|
| 1351 | DataSink.write(thresholdFile, result); |
---|
| 1352 | } |
---|
| 1353 | |
---|
| 1354 | return text.toString(); |
---|
| 1355 | } |
---|
| 1356 | |
---|
| 1357 | /** |
---|
| 1358 | * Attempts to load a cost matrix. |
---|
| 1359 | * |
---|
| 1360 | * @param costFileName the filename of the cost matrix |
---|
| 1361 | * @param numClasses the number of classes that should be in the cost matrix |
---|
| 1362 | * (only used if the cost file is in old format). |
---|
| 1363 | * @return a <code>CostMatrix</code> value, or null if costFileName is empty |
---|
| 1364 | * @throws Exception if an error occurs. |
---|
| 1365 | */ |
---|
| 1366 | protected static CostMatrix handleCostOption(String costFileName, |
---|
| 1367 | int numClasses) |
---|
| 1368 | throws Exception { |
---|
| 1369 | |
---|
| 1370 | if ((costFileName != null) && (costFileName.length() != 0)) { |
---|
| 1371 | System.out.println( |
---|
| 1372 | "NOTE: The behaviour of the -m option has changed between WEKA 3.0" |
---|
| 1373 | +" and WEKA 3.1. -m now carries out cost-sensitive *evaluation*" |
---|
| 1374 | +" only. For cost-sensitive *prediction*, use one of the" |
---|
| 1375 | +" cost-sensitive metaschemes such as" |
---|
| 1376 | +" weka.classifiers.meta.CostSensitiveClassifier or" |
---|
| 1377 | +" weka.classifiers.meta.MetaCost"); |
---|
| 1378 | |
---|
| 1379 | Reader costReader = null; |
---|
| 1380 | try { |
---|
| 1381 | costReader = new BufferedReader(new FileReader(costFileName)); |
---|
| 1382 | } catch (Exception e) { |
---|
| 1383 | throw new Exception("Can't open file " + e.getMessage() + '.'); |
---|
| 1384 | } |
---|
| 1385 | try { |
---|
| 1386 | // First try as a proper cost matrix format |
---|
| 1387 | return new CostMatrix(costReader); |
---|
| 1388 | } catch (Exception ex) { |
---|
| 1389 | try { |
---|
| 1390 | // Now try as the poxy old format :-) |
---|
| 1391 | //System.err.println("Attempting to read old format cost file"); |
---|
| 1392 | try { |
---|
| 1393 | costReader.close(); // Close the old one |
---|
| 1394 | costReader = new BufferedReader(new FileReader(costFileName)); |
---|
| 1395 | } catch (Exception e) { |
---|
| 1396 | throw new Exception("Can't open file " + e.getMessage() + '.'); |
---|
| 1397 | } |
---|
| 1398 | CostMatrix costMatrix = new CostMatrix(numClasses); |
---|
| 1399 | //System.err.println("Created default cost matrix"); |
---|
| 1400 | costMatrix.readOldFormat(costReader); |
---|
| 1401 | return costMatrix; |
---|
| 1402 | //System.err.println("Read old format"); |
---|
| 1403 | } catch (Exception e2) { |
---|
| 1404 | // re-throw the original exception |
---|
| 1405 | //System.err.println("Re-throwing original exception"); |
---|
| 1406 | throw ex; |
---|
| 1407 | } |
---|
| 1408 | } |
---|
| 1409 | } else { |
---|
| 1410 | return null; |
---|
| 1411 | } |
---|
| 1412 | } |
---|
| 1413 | |
---|
| 1414 | /** |
---|
| 1415 | * Evaluates the classifier on a given set of instances. Note that |
---|
| 1416 | * the data must have exactly the same format (e.g. order of |
---|
| 1417 | * attributes) as the data used to train the classifier! Otherwise |
---|
| 1418 | * the results will generally be meaningless. |
---|
| 1419 | * |
---|
| 1420 | * @param classifier machine learning classifier |
---|
| 1421 | * @param data set of test instances for evaluation |
---|
| 1422 | * @param forPredictionsPrinting varargs parameter that, if supplied, is |
---|
| 1423 | * expected to hold a weka.classifiers.evaluation.output.prediction.AbstractOutput |
---|
| 1424 | * object |
---|
| 1425 | * @return the predictions |
---|
| 1426 | * @throws Exception if model could not be evaluated |
---|
| 1427 | * successfully |
---|
| 1428 | */ |
---|
| 1429 | public double[] evaluateModel(Classifier classifier, |
---|
| 1430 | Instances data, |
---|
| 1431 | Object... forPredictionsPrinting) throws Exception { |
---|
| 1432 | // for predictions printing |
---|
| 1433 | AbstractOutput classificationOutput = null; |
---|
| 1434 | |
---|
| 1435 | double predictions[] = new double[data.numInstances()]; |
---|
| 1436 | |
---|
| 1437 | if (forPredictionsPrinting.length > 0) { |
---|
| 1438 | classificationOutput = (AbstractOutput) forPredictionsPrinting[0]; |
---|
| 1439 | } |
---|
| 1440 | |
---|
| 1441 | // Need to be able to collect predictions if appropriate (for AUC) |
---|
| 1442 | |
---|
| 1443 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1444 | predictions[i] = evaluateModelOnceAndRecordPrediction((Classifier)classifier, |
---|
| 1445 | data.instance(i)); |
---|
| 1446 | if (classificationOutput != null) |
---|
| 1447 | classificationOutput.printClassification(classifier, data.instance(i), i); |
---|
| 1448 | } |
---|
| 1449 | |
---|
| 1450 | return predictions; |
---|
| 1451 | } |
---|
| 1452 | |
---|
| 1453 | /** |
---|
| 1454 | * Evaluates the supplied distribution on a single instance. |
---|
| 1455 | * |
---|
| 1456 | * @param dist the supplied distribution |
---|
| 1457 | * @param instance the test instance to be classified |
---|
| 1458 | * @param storePredictions whether to store predictions for nominal classifier |
---|
| 1459 | * @return the prediction |
---|
| 1460 | * @throws Exception if model could not be evaluated successfully |
---|
| 1461 | */ |
---|
| 1462 | public double evaluationForSingleInstance(double[] dist, Instance instance, |
---|
| 1463 | boolean storePredictions) throws Exception { |
---|
| 1464 | |
---|
| 1465 | double pred; |
---|
| 1466 | |
---|
| 1467 | if (m_ClassIsNominal) { |
---|
| 1468 | pred = Utils.maxIndex(dist); |
---|
| 1469 | if (dist[(int)pred] <= 0) { |
---|
| 1470 | pred = Utils.missingValue(); |
---|
| 1471 | } |
---|
| 1472 | updateStatsForClassifier(dist, instance); |
---|
| 1473 | if (storePredictions) { |
---|
| 1474 | if (m_Predictions == null) |
---|
| 1475 | m_Predictions = new FastVector(); |
---|
| 1476 | m_Predictions.addElement(new NominalPrediction(instance.classValue(), dist, |
---|
| 1477 | instance.weight())); |
---|
| 1478 | } |
---|
| 1479 | } else { |
---|
| 1480 | pred = dist[0]; |
---|
| 1481 | updateStatsForPredictor(pred, instance); |
---|
| 1482 | if (storePredictions) { |
---|
| 1483 | if (m_Predictions == null) |
---|
| 1484 | m_Predictions = new FastVector(); |
---|
| 1485 | m_Predictions.addElement(new NumericPrediction(instance.classValue(), pred, |
---|
| 1486 | instance.weight())); |
---|
| 1487 | } |
---|
| 1488 | } |
---|
| 1489 | |
---|
| 1490 | return pred; |
---|
| 1491 | } |
---|
| 1492 | |
---|
| 1493 | /** |
---|
| 1494 | * Evaluates the classifier on a single instance and records the |
---|
| 1495 | * prediction. |
---|
| 1496 | * |
---|
| 1497 | * @param classifier machine learning classifier |
---|
| 1498 | * @param instance the test instance to be classified |
---|
| 1499 | * @param storePredictions whether to store predictions for nominal classifier |
---|
| 1500 | * @return the prediction made by the clasifier |
---|
| 1501 | * @throws Exception if model could not be evaluated |
---|
| 1502 | * successfully or the data contains string attributes |
---|
| 1503 | */ |
---|
| 1504 | protected double evaluationForSingleInstance(Classifier classifier, |
---|
| 1505 | Instance instance, |
---|
| 1506 | boolean storePredictions) throws Exception { |
---|
| 1507 | |
---|
| 1508 | Instance classMissing = (Instance)instance.copy(); |
---|
| 1509 | classMissing.setDataset(instance.dataset()); |
---|
| 1510 | classMissing.setClassMissing(); |
---|
| 1511 | double pred = evaluationForSingleInstance(classifier.distributionForInstance(classMissing), |
---|
| 1512 | instance, storePredictions); |
---|
| 1513 | |
---|
| 1514 | // We don't need to do the following if the class is nominal because in that case |
---|
| 1515 | // entropy and coverage statistics are always computed. |
---|
| 1516 | if (!m_ClassIsNominal) { |
---|
| 1517 | if (!instance.classIsMissing() && !Utils.isMissingValue(pred)) { |
---|
| 1518 | if (classifier instanceof IntervalEstimator) { |
---|
| 1519 | updateStatsForIntervalEstimator((IntervalEstimator)classifier, classMissing, |
---|
| 1520 | instance.classValue()); |
---|
| 1521 | } else { |
---|
| 1522 | m_CoverageStatisticsAvailable = false; |
---|
| 1523 | } |
---|
| 1524 | if (classifier instanceof ConditionalDensityEstimator) { |
---|
| 1525 | updateStatsForConditionalDensityEstimator((ConditionalDensityEstimator)classifier, |
---|
| 1526 | classMissing, instance.classValue()); |
---|
| 1527 | } else { |
---|
| 1528 | m_ComplexityStatisticsAvailable = false; |
---|
| 1529 | } |
---|
| 1530 | } |
---|
| 1531 | } |
---|
| 1532 | return pred; |
---|
| 1533 | } |
---|
| 1534 | |
---|
| 1535 | /** |
---|
| 1536 | * Evaluates the classifier on a single instance and records the |
---|
| 1537 | * prediction. |
---|
| 1538 | * |
---|
| 1539 | * @param classifier machine learning classifier |
---|
| 1540 | * @param instance the test instance to be classified |
---|
| 1541 | * @return the prediction made by the clasifier |
---|
| 1542 | * @throws Exception if model could not be evaluated |
---|
| 1543 | * successfully or the data contains string attributes |
---|
| 1544 | */ |
---|
| 1545 | public double evaluateModelOnceAndRecordPrediction(Classifier classifier, |
---|
| 1546 | Instance instance) throws Exception { |
---|
| 1547 | |
---|
| 1548 | return evaluationForSingleInstance(classifier, instance, true); |
---|
| 1549 | } |
---|
| 1550 | |
---|
| 1551 | /** |
---|
| 1552 | * Evaluates the classifier on a single instance. |
---|
| 1553 | * |
---|
| 1554 | * @param classifier machine learning classifier |
---|
| 1555 | * @param instance the test instance to be classified |
---|
| 1556 | * @return the prediction made by the clasifier |
---|
| 1557 | * @throws Exception if model could not be evaluated |
---|
| 1558 | * successfully or the data contains string attributes |
---|
| 1559 | */ |
---|
| 1560 | public double evaluateModelOnce(Classifier classifier, Instance instance) throws Exception { |
---|
| 1561 | |
---|
| 1562 | return evaluationForSingleInstance(classifier, instance, false); |
---|
| 1563 | } |
---|
| 1564 | |
---|
| 1565 | /** |
---|
| 1566 | * Evaluates the supplied distribution on a single instance. |
---|
| 1567 | * |
---|
| 1568 | * @param dist the supplied distribution |
---|
| 1569 | * @param instance the test instance to be classified |
---|
| 1570 | * @return the prediction |
---|
| 1571 | * @throws Exception if model could not be evaluated |
---|
| 1572 | * successfully |
---|
| 1573 | */ |
---|
| 1574 | public double evaluateModelOnce(double [] dist, Instance instance) throws Exception { |
---|
| 1575 | |
---|
| 1576 | return evaluationForSingleInstance(dist, instance, false); |
---|
| 1577 | } |
---|
| 1578 | |
---|
| 1579 | /** |
---|
| 1580 | * Evaluates the supplied distribution on a single instance. |
---|
| 1581 | * |
---|
| 1582 | * @param dist the supplied distribution |
---|
| 1583 | * @param instance the test instance to be classified |
---|
| 1584 | * @return the prediction |
---|
| 1585 | * @throws Exception if model could not be evaluated |
---|
| 1586 | * successfully |
---|
| 1587 | */ |
---|
| 1588 | public double evaluateModelOnceAndRecordPrediction(double [] dist, |
---|
| 1589 | Instance instance) throws Exception { |
---|
| 1590 | |
---|
| 1591 | return evaluationForSingleInstance(dist, instance, true); |
---|
| 1592 | } |
---|
| 1593 | |
---|
| 1594 | /** |
---|
| 1595 | * Evaluates the supplied prediction on a single instance. |
---|
| 1596 | * |
---|
| 1597 | * @param prediction the supplied prediction |
---|
| 1598 | * @param instance the test instance to be classified |
---|
| 1599 | * @throws Exception if model could not be evaluated |
---|
| 1600 | * successfully |
---|
| 1601 | */ |
---|
| 1602 | public void evaluateModelOnce(double prediction, |
---|
| 1603 | Instance instance) throws Exception { |
---|
| 1604 | |
---|
| 1605 | evaluateModelOnce(makeDistribution(prediction), instance); |
---|
| 1606 | } |
---|
| 1607 | |
---|
| 1608 | /** |
---|
| 1609 | * Returns the predictions that have been collected. |
---|
| 1610 | * |
---|
| 1611 | * @return a reference to the FastVector containing the predictions |
---|
| 1612 | * that have been collected. This should be null if no predictions |
---|
| 1613 | * have been collected. |
---|
| 1614 | */ |
---|
| 1615 | public FastVector predictions() { |
---|
| 1616 | return m_Predictions; |
---|
| 1617 | } |
---|
| 1618 | |
---|
| 1619 | /** |
---|
| 1620 | * Wraps a static classifier in enough source to test using the weka |
---|
| 1621 | * class libraries. |
---|
| 1622 | * |
---|
| 1623 | * @param classifier a Sourcable Classifier |
---|
| 1624 | * @param className the name to give to the source code class |
---|
| 1625 | * @return the source for a static classifier that can be tested with |
---|
| 1626 | * weka libraries. |
---|
| 1627 | * @throws Exception if code-generation fails |
---|
| 1628 | */ |
---|
| 1629 | public static String wekaStaticWrapper(Sourcable classifier, String className) |
---|
| 1630 | throws Exception { |
---|
| 1631 | |
---|
| 1632 | StringBuffer result = new StringBuffer(); |
---|
| 1633 | String staticClassifier = classifier.toSource(className); |
---|
| 1634 | |
---|
| 1635 | result.append("// Generated with Weka " + Version.VERSION + "\n"); |
---|
| 1636 | result.append("//\n"); |
---|
| 1637 | result.append("// This code is public domain and comes with no warranty.\n"); |
---|
| 1638 | result.append("//\n"); |
---|
| 1639 | result.append("// Timestamp: " + new Date() + "\n"); |
---|
| 1640 | result.append("\n"); |
---|
| 1641 | result.append("package weka.classifiers;\n"); |
---|
| 1642 | result.append("\n"); |
---|
| 1643 | result.append("import weka.core.Attribute;\n"); |
---|
| 1644 | result.append("import weka.core.Capabilities;\n"); |
---|
| 1645 | result.append("import weka.core.Capabilities.Capability;\n"); |
---|
| 1646 | result.append("import weka.core.Instance;\n"); |
---|
| 1647 | result.append("import weka.core.Instances;\n"); |
---|
| 1648 | result.append("import weka.core.RevisionUtils;\n"); |
---|
| 1649 | result.append("import weka.classifiers.Classifier;\nimport weka.classifiers.AbstractClassifier;\n"); |
---|
| 1650 | result.append("\n"); |
---|
| 1651 | result.append("public class WekaWrapper\n"); |
---|
| 1652 | result.append(" extends AbstractClassifier {\n"); |
---|
| 1653 | |
---|
| 1654 | // globalInfo |
---|
| 1655 | result.append("\n"); |
---|
| 1656 | result.append(" /**\n"); |
---|
| 1657 | result.append(" * Returns only the toString() method.\n"); |
---|
| 1658 | result.append(" *\n"); |
---|
| 1659 | result.append(" * @return a string describing the classifier\n"); |
---|
| 1660 | result.append(" */\n"); |
---|
| 1661 | result.append(" public String globalInfo() {\n"); |
---|
| 1662 | result.append(" return toString();\n"); |
---|
| 1663 | result.append(" }\n"); |
---|
| 1664 | |
---|
| 1665 | // getCapabilities |
---|
| 1666 | result.append("\n"); |
---|
| 1667 | result.append(" /**\n"); |
---|
| 1668 | result.append(" * Returns the capabilities of this classifier.\n"); |
---|
| 1669 | result.append(" *\n"); |
---|
| 1670 | result.append(" * @return the capabilities\n"); |
---|
| 1671 | result.append(" */\n"); |
---|
| 1672 | result.append(" public Capabilities getCapabilities() {\n"); |
---|
| 1673 | result.append(((Classifier) classifier).getCapabilities().toSource("result", 4)); |
---|
| 1674 | result.append(" return result;\n"); |
---|
| 1675 | result.append(" }\n"); |
---|
| 1676 | |
---|
| 1677 | // buildClassifier |
---|
| 1678 | result.append("\n"); |
---|
| 1679 | result.append(" /**\n"); |
---|
| 1680 | result.append(" * only checks the data against its capabilities.\n"); |
---|
| 1681 | result.append(" *\n"); |
---|
| 1682 | result.append(" * @param i the training data\n"); |
---|
| 1683 | result.append(" */\n"); |
---|
| 1684 | result.append(" public void buildClassifier(Instances i) throws Exception {\n"); |
---|
| 1685 | result.append(" // can classifier handle the data?\n"); |
---|
| 1686 | result.append(" getCapabilities().testWithFail(i);\n"); |
---|
| 1687 | result.append(" }\n"); |
---|
| 1688 | |
---|
| 1689 | // classifyInstance |
---|
| 1690 | result.append("\n"); |
---|
| 1691 | result.append(" /**\n"); |
---|
| 1692 | result.append(" * Classifies the given instance.\n"); |
---|
| 1693 | result.append(" *\n"); |
---|
| 1694 | result.append(" * @param i the instance to classify\n"); |
---|
| 1695 | result.append(" * @return the classification result\n"); |
---|
| 1696 | result.append(" */\n"); |
---|
| 1697 | result.append(" public double classifyInstance(Instance i) throws Exception {\n"); |
---|
| 1698 | result.append(" Object[] s = new Object[i.numAttributes()];\n"); |
---|
| 1699 | result.append(" \n"); |
---|
| 1700 | result.append(" for (int j = 0; j < s.length; j++) {\n"); |
---|
| 1701 | result.append(" if (!i.isMissing(j)) {\n"); |
---|
| 1702 | result.append(" if (i.attribute(j).isNominal())\n"); |
---|
| 1703 | result.append(" s[j] = new String(i.stringValue(j));\n"); |
---|
| 1704 | result.append(" else if (i.attribute(j).isNumeric())\n"); |
---|
| 1705 | result.append(" s[j] = new Double(i.value(j));\n"); |
---|
| 1706 | result.append(" }\n"); |
---|
| 1707 | result.append(" }\n"); |
---|
| 1708 | result.append(" \n"); |
---|
| 1709 | result.append(" // set class value to missing\n"); |
---|
| 1710 | result.append(" s[i.classIndex()] = null;\n"); |
---|
| 1711 | result.append(" \n"); |
---|
| 1712 | result.append(" return " + className + ".classify(s);\n"); |
---|
| 1713 | result.append(" }\n"); |
---|
| 1714 | |
---|
| 1715 | // getRevision |
---|
| 1716 | result.append("\n"); |
---|
| 1717 | result.append(" /**\n"); |
---|
| 1718 | result.append(" * Returns the revision string.\n"); |
---|
| 1719 | result.append(" * \n"); |
---|
| 1720 | result.append(" * @return the revision\n"); |
---|
| 1721 | result.append(" */\n"); |
---|
| 1722 | result.append(" public String getRevision() {\n"); |
---|
| 1723 | result.append(" return RevisionUtils.extract(\"1.0\");\n"); |
---|
| 1724 | result.append(" }\n"); |
---|
| 1725 | |
---|
| 1726 | // toString |
---|
| 1727 | result.append("\n"); |
---|
| 1728 | result.append(" /**\n"); |
---|
| 1729 | result.append(" * Returns only the classnames and what classifier it is based on.\n"); |
---|
| 1730 | result.append(" *\n"); |
---|
| 1731 | result.append(" * @return a short description\n"); |
---|
| 1732 | result.append(" */\n"); |
---|
| 1733 | result.append(" public String toString() {\n"); |
---|
| 1734 | result.append(" return \"Auto-generated classifier wrapper, based on " |
---|
| 1735 | + classifier.getClass().getName() + " (generated with Weka " + Version.VERSION + ").\\n" |
---|
| 1736 | + "\" + this.getClass().getName() + \"/" + className + "\";\n"); |
---|
| 1737 | result.append(" }\n"); |
---|
| 1738 | |
---|
| 1739 | // main |
---|
| 1740 | result.append("\n"); |
---|
| 1741 | result.append(" /**\n"); |
---|
| 1742 | result.append(" * Runs the classfier from commandline.\n"); |
---|
| 1743 | result.append(" *\n"); |
---|
| 1744 | result.append(" * @param args the commandline arguments\n"); |
---|
| 1745 | result.append(" */\n"); |
---|
| 1746 | result.append(" public static void main(String args[]) {\n"); |
---|
| 1747 | result.append(" runClassifier(new WekaWrapper(), args);\n"); |
---|
| 1748 | result.append(" }\n"); |
---|
| 1749 | result.append("}\n"); |
---|
| 1750 | |
---|
| 1751 | // actual classifier code |
---|
| 1752 | result.append("\n"); |
---|
| 1753 | result.append(staticClassifier); |
---|
| 1754 | |
---|
| 1755 | return result.toString(); |
---|
| 1756 | } |
---|
| 1757 | |
---|
| 1758 | /** |
---|
| 1759 | * Gets the number of test instances that had a known class value |
---|
| 1760 | * (actually the sum of the weights of test instances with known |
---|
| 1761 | * class value). |
---|
| 1762 | * |
---|
| 1763 | * @return the number of test instances with known class |
---|
| 1764 | */ |
---|
| 1765 | public final double numInstances() { |
---|
| 1766 | |
---|
| 1767 | return m_WithClass; |
---|
| 1768 | } |
---|
| 1769 | |
---|
| 1770 | /** |
---|
| 1771 | * Gets the coverage of the test cases by the predicted regions at |
---|
| 1772 | * the confidence level specified when evaluation was performed. |
---|
| 1773 | * |
---|
| 1774 | * @return the coverage of the test cases by the predicted regions |
---|
| 1775 | */ |
---|
| 1776 | public final double coverageOfTestCasesByPredictedRegions() { |
---|
| 1777 | |
---|
| 1778 | if (!m_CoverageStatisticsAvailable) |
---|
| 1779 | return Double.NaN; |
---|
| 1780 | |
---|
| 1781 | return 100 * m_TotalCoverage / m_WithClass; |
---|
| 1782 | } |
---|
| 1783 | |
---|
| 1784 | /** |
---|
| 1785 | * Gets the average size of the predicted regions, relative to the |
---|
| 1786 | * range of the target in the training data, at the confidence level |
---|
| 1787 | * specified when evaluation was performed. |
---|
| 1788 | * |
---|
| 1789 | * @return the average size of the predicted regions |
---|
| 1790 | */ |
---|
| 1791 | public final double sizeOfPredictedRegions() { |
---|
| 1792 | |
---|
| 1793 | if (m_NoPriors || !m_CoverageStatisticsAvailable) |
---|
| 1794 | return Double.NaN; |
---|
| 1795 | |
---|
| 1796 | return 100 * m_TotalSizeOfRegions / m_WithClass; |
---|
| 1797 | } |
---|
| 1798 | |
---|
| 1799 | /** |
---|
| 1800 | * Gets the number of instances incorrectly classified (that is, for |
---|
| 1801 | * which an incorrect prediction was made). (Actually the sum of the |
---|
| 1802 | * weights of these instances) |
---|
| 1803 | * |
---|
| 1804 | * @return the number of incorrectly classified instances |
---|
| 1805 | */ |
---|
| 1806 | public final double incorrect() { |
---|
| 1807 | |
---|
| 1808 | return m_Incorrect; |
---|
| 1809 | } |
---|
| 1810 | |
---|
| 1811 | /** |
---|
| 1812 | * Gets the percentage of instances incorrectly classified (that is, |
---|
| 1813 | * for which an incorrect prediction was made). |
---|
| 1814 | * |
---|
| 1815 | * @return the percent of incorrectly classified instances |
---|
| 1816 | * (between 0 and 100) |
---|
| 1817 | */ |
---|
| 1818 | public final double pctIncorrect() { |
---|
| 1819 | |
---|
| 1820 | return 100 * m_Incorrect / m_WithClass; |
---|
| 1821 | } |
---|
| 1822 | |
---|
| 1823 | /** |
---|
| 1824 | * Gets the total cost, that is, the cost of each prediction times the |
---|
| 1825 | * weight of the instance, summed over all instances. |
---|
| 1826 | * |
---|
| 1827 | * @return the total cost |
---|
| 1828 | */ |
---|
| 1829 | public final double totalCost() { |
---|
| 1830 | |
---|
| 1831 | return m_TotalCost; |
---|
| 1832 | } |
---|
| 1833 | |
---|
| 1834 | /** |
---|
| 1835 | * Gets the average cost, that is, total cost of misclassifications |
---|
| 1836 | * (incorrect plus unclassified) over the total number of instances. |
---|
| 1837 | * |
---|
| 1838 | * @return the average cost. |
---|
| 1839 | */ |
---|
| 1840 | public final double avgCost() { |
---|
| 1841 | |
---|
| 1842 | return m_TotalCost / m_WithClass; |
---|
| 1843 | } |
---|
| 1844 | |
---|
| 1845 | /** |
---|
| 1846 | * Gets the number of instances correctly classified (that is, for |
---|
| 1847 | * which a correct prediction was made). (Actually the sum of the weights |
---|
| 1848 | * of these instances) |
---|
| 1849 | * |
---|
| 1850 | * @return the number of correctly classified instances |
---|
| 1851 | */ |
---|
| 1852 | public final double correct() { |
---|
| 1853 | |
---|
| 1854 | return m_Correct; |
---|
| 1855 | } |
---|
| 1856 | |
---|
| 1857 | /** |
---|
| 1858 | * Gets the percentage of instances correctly classified (that is, for |
---|
| 1859 | * which a correct prediction was made). |
---|
| 1860 | * |
---|
| 1861 | * @return the percent of correctly classified instances (between 0 and 100) |
---|
| 1862 | */ |
---|
| 1863 | public final double pctCorrect() { |
---|
| 1864 | |
---|
| 1865 | return 100 * m_Correct / m_WithClass; |
---|
| 1866 | } |
---|
| 1867 | |
---|
| 1868 | /** |
---|
| 1869 | * Gets the number of instances not classified (that is, for |
---|
| 1870 | * which no prediction was made by the classifier). (Actually the sum |
---|
| 1871 | * of the weights of these instances) |
---|
| 1872 | * |
---|
| 1873 | * @return the number of unclassified instances |
---|
| 1874 | */ |
---|
| 1875 | public final double unclassified() { |
---|
| 1876 | |
---|
| 1877 | return m_Unclassified; |
---|
| 1878 | } |
---|
| 1879 | |
---|
| 1880 | /** |
---|
| 1881 | * Gets the percentage of instances not classified (that is, for |
---|
| 1882 | * which no prediction was made by the classifier). |
---|
| 1883 | * |
---|
| 1884 | * @return the percent of unclassified instances (between 0 and 100) |
---|
| 1885 | */ |
---|
| 1886 | public final double pctUnclassified() { |
---|
| 1887 | |
---|
| 1888 | return 100 * m_Unclassified / m_WithClass; |
---|
| 1889 | } |
---|
| 1890 | |
---|
| 1891 | /** |
---|
| 1892 | * Returns the estimated error rate or the root mean squared error |
---|
| 1893 | * (if the class is numeric). If a cost matrix was given this |
---|
| 1894 | * error rate gives the average cost. |
---|
| 1895 | * |
---|
| 1896 | * @return the estimated error rate (between 0 and 1, or between 0 and |
---|
| 1897 | * maximum cost) |
---|
| 1898 | */ |
---|
| 1899 | public final double errorRate() { |
---|
| 1900 | |
---|
| 1901 | if (!m_ClassIsNominal) { |
---|
| 1902 | return Math.sqrt(m_SumSqrErr / (m_WithClass - m_Unclassified)); |
---|
| 1903 | } |
---|
| 1904 | if (m_CostMatrix == null) { |
---|
| 1905 | return m_Incorrect / m_WithClass; |
---|
| 1906 | } else { |
---|
| 1907 | return avgCost(); |
---|
| 1908 | } |
---|
| 1909 | } |
---|
| 1910 | |
---|
| 1911 | /** |
---|
| 1912 | * Returns value of kappa statistic if class is nominal. |
---|
| 1913 | * |
---|
| 1914 | * @return the value of the kappa statistic |
---|
| 1915 | */ |
---|
| 1916 | public final double kappa() { |
---|
| 1917 | |
---|
| 1918 | |
---|
| 1919 | double[] sumRows = new double[m_ConfusionMatrix.length]; |
---|
| 1920 | double[] sumColumns = new double[m_ConfusionMatrix.length]; |
---|
| 1921 | double sumOfWeights = 0; |
---|
| 1922 | for (int i = 0; i < m_ConfusionMatrix.length; i++) { |
---|
| 1923 | for (int j = 0; j < m_ConfusionMatrix.length; j++) { |
---|
| 1924 | sumRows[i] += m_ConfusionMatrix[i][j]; |
---|
| 1925 | sumColumns[j] += m_ConfusionMatrix[i][j]; |
---|
| 1926 | sumOfWeights += m_ConfusionMatrix[i][j]; |
---|
| 1927 | } |
---|
| 1928 | } |
---|
| 1929 | double correct = 0, chanceAgreement = 0; |
---|
| 1930 | for (int i = 0; i < m_ConfusionMatrix.length; i++) { |
---|
| 1931 | chanceAgreement += (sumRows[i] * sumColumns[i]); |
---|
| 1932 | correct += m_ConfusionMatrix[i][i]; |
---|
| 1933 | } |
---|
| 1934 | chanceAgreement /= (sumOfWeights * sumOfWeights); |
---|
| 1935 | correct /= sumOfWeights; |
---|
| 1936 | |
---|
| 1937 | if (chanceAgreement < 1) { |
---|
| 1938 | return (correct - chanceAgreement) / (1 - chanceAgreement); |
---|
| 1939 | } else { |
---|
| 1940 | return 1; |
---|
| 1941 | } |
---|
| 1942 | } |
---|
| 1943 | |
---|
| 1944 | /** |
---|
| 1945 | * Returns the correlation coefficient if the class is numeric. |
---|
| 1946 | * |
---|
| 1947 | * @return the correlation coefficient |
---|
| 1948 | * @throws Exception if class is not numeric |
---|
| 1949 | */ |
---|
| 1950 | public final double correlationCoefficient() throws Exception { |
---|
| 1951 | |
---|
| 1952 | if (m_ClassIsNominal) { |
---|
| 1953 | throw |
---|
| 1954 | new Exception("Can't compute correlation coefficient: " + |
---|
| 1955 | "class is nominal!"); |
---|
| 1956 | } |
---|
| 1957 | |
---|
| 1958 | double correlation = 0; |
---|
| 1959 | double varActual = |
---|
| 1960 | m_SumSqrClass - m_SumClass * m_SumClass / |
---|
| 1961 | (m_WithClass - m_Unclassified); |
---|
| 1962 | double varPredicted = |
---|
| 1963 | m_SumSqrPredicted - m_SumPredicted * m_SumPredicted / |
---|
| 1964 | (m_WithClass - m_Unclassified); |
---|
| 1965 | double varProd = |
---|
| 1966 | m_SumClassPredicted - m_SumClass * m_SumPredicted / |
---|
| 1967 | (m_WithClass - m_Unclassified); |
---|
| 1968 | |
---|
| 1969 | if (varActual * varPredicted <= 0) { |
---|
| 1970 | correlation = 0.0; |
---|
| 1971 | } else { |
---|
| 1972 | correlation = varProd / Math.sqrt(varActual * varPredicted); |
---|
| 1973 | } |
---|
| 1974 | |
---|
| 1975 | return correlation; |
---|
| 1976 | } |
---|
| 1977 | |
---|
| 1978 | /** |
---|
| 1979 | * Returns the mean absolute error. Refers to the error of the |
---|
| 1980 | * predicted values for numeric classes, and the error of the |
---|
| 1981 | * predicted probability distribution for nominal classes. |
---|
| 1982 | * |
---|
| 1983 | * @return the mean absolute error |
---|
| 1984 | */ |
---|
| 1985 | public final double meanAbsoluteError() { |
---|
| 1986 | |
---|
| 1987 | return m_SumAbsErr / (m_WithClass - m_Unclassified); |
---|
| 1988 | } |
---|
| 1989 | |
---|
| 1990 | /** |
---|
| 1991 | * Returns the mean absolute error of the prior. |
---|
| 1992 | * |
---|
| 1993 | * @return the mean absolute error |
---|
| 1994 | */ |
---|
| 1995 | public final double meanPriorAbsoluteError() { |
---|
| 1996 | |
---|
| 1997 | if (m_NoPriors) |
---|
| 1998 | return Double.NaN; |
---|
| 1999 | |
---|
| 2000 | return m_SumPriorAbsErr / m_WithClass; |
---|
| 2001 | } |
---|
| 2002 | |
---|
| 2003 | /** |
---|
| 2004 | * Returns the relative absolute error. |
---|
| 2005 | * |
---|
| 2006 | * @return the relative absolute error |
---|
| 2007 | * @throws Exception if it can't be computed |
---|
| 2008 | */ |
---|
| 2009 | public final double relativeAbsoluteError() throws Exception { |
---|
| 2010 | |
---|
| 2011 | if (m_NoPriors) |
---|
| 2012 | return Double.NaN; |
---|
| 2013 | |
---|
| 2014 | return 100 * meanAbsoluteError() / meanPriorAbsoluteError(); |
---|
| 2015 | } |
---|
| 2016 | |
---|
| 2017 | /** |
---|
| 2018 | * Returns the root mean squared error. |
---|
| 2019 | * |
---|
| 2020 | * @return the root mean squared error |
---|
| 2021 | */ |
---|
| 2022 | public final double rootMeanSquaredError() { |
---|
| 2023 | |
---|
| 2024 | return Math.sqrt(m_SumSqrErr / (m_WithClass - m_Unclassified)); |
---|
| 2025 | } |
---|
| 2026 | |
---|
| 2027 | /** |
---|
| 2028 | * Returns the root mean prior squared error. |
---|
| 2029 | * |
---|
| 2030 | * @return the root mean prior squared error |
---|
| 2031 | */ |
---|
| 2032 | public final double rootMeanPriorSquaredError() { |
---|
| 2033 | |
---|
| 2034 | if (m_NoPriors) |
---|
| 2035 | return Double.NaN; |
---|
| 2036 | |
---|
| 2037 | return Math.sqrt(m_SumPriorSqrErr / m_WithClass); |
---|
| 2038 | } |
---|
| 2039 | |
---|
| 2040 | /** |
---|
| 2041 | * Returns the root relative squared error if the class is numeric. |
---|
| 2042 | * |
---|
| 2043 | * @return the root relative squared error |
---|
| 2044 | */ |
---|
| 2045 | public final double rootRelativeSquaredError() { |
---|
| 2046 | |
---|
| 2047 | if (m_NoPriors) |
---|
| 2048 | return Double.NaN; |
---|
| 2049 | |
---|
| 2050 | return 100.0 * rootMeanSquaredError() / rootMeanPriorSquaredError(); |
---|
| 2051 | } |
---|
| 2052 | |
---|
| 2053 | /** |
---|
| 2054 | * Calculate the entropy of the prior distribution. |
---|
| 2055 | * |
---|
| 2056 | * @return the entropy of the prior distribution |
---|
| 2057 | * @throws Exception if the class is not nominal |
---|
| 2058 | */ |
---|
| 2059 | public final double priorEntropy() throws Exception { |
---|
| 2060 | |
---|
| 2061 | if (!m_ClassIsNominal) { |
---|
| 2062 | throw |
---|
| 2063 | new Exception("Can't compute entropy of class prior: " + |
---|
| 2064 | "class numeric!"); |
---|
| 2065 | } |
---|
| 2066 | |
---|
| 2067 | if (m_NoPriors) |
---|
| 2068 | return Double.NaN; |
---|
| 2069 | |
---|
| 2070 | double entropy = 0; |
---|
| 2071 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2072 | entropy -= m_ClassPriors[i] / m_ClassPriorsSum * |
---|
| 2073 | Utils.log2(m_ClassPriors[i] / m_ClassPriorsSum); |
---|
| 2074 | } |
---|
| 2075 | return entropy; |
---|
| 2076 | } |
---|
| 2077 | |
---|
| 2078 | /** |
---|
| 2079 | * Return the total Kononenko & Bratko Information score in bits. |
---|
| 2080 | * |
---|
| 2081 | * @return the K&B information score |
---|
| 2082 | * @throws Exception if the class is not nominal |
---|
| 2083 | */ |
---|
| 2084 | public final double KBInformation() throws Exception { |
---|
| 2085 | |
---|
| 2086 | if (!m_ClassIsNominal) { |
---|
| 2087 | throw |
---|
| 2088 | new Exception("Can't compute K&B Info score: " + |
---|
| 2089 | "class numeric!"); |
---|
| 2090 | } |
---|
| 2091 | |
---|
| 2092 | if (m_NoPriors) |
---|
| 2093 | return Double.NaN; |
---|
| 2094 | |
---|
| 2095 | return m_SumKBInfo; |
---|
| 2096 | } |
---|
| 2097 | |
---|
| 2098 | /** |
---|
| 2099 | * Return the Kononenko & Bratko Information score in bits per |
---|
| 2100 | * instance. |
---|
| 2101 | * |
---|
| 2102 | * @return the K&B information score |
---|
| 2103 | * @throws Exception if the class is not nominal |
---|
| 2104 | */ |
---|
| 2105 | public final double KBMeanInformation() throws Exception { |
---|
| 2106 | |
---|
| 2107 | if (!m_ClassIsNominal) { |
---|
| 2108 | throw |
---|
| 2109 | new Exception("Can't compute K&B Info score: class numeric!"); |
---|
| 2110 | } |
---|
| 2111 | |
---|
| 2112 | if (m_NoPriors) |
---|
| 2113 | return Double.NaN; |
---|
| 2114 | |
---|
| 2115 | return m_SumKBInfo / (m_WithClass - m_Unclassified); |
---|
| 2116 | } |
---|
| 2117 | |
---|
| 2118 | /** |
---|
| 2119 | * Return the Kononenko & Bratko Relative Information score. |
---|
| 2120 | * |
---|
| 2121 | * @return the K&B relative information score |
---|
| 2122 | * @throws Exception if the class is not nominal |
---|
| 2123 | */ |
---|
| 2124 | public final double KBRelativeInformation() throws Exception { |
---|
| 2125 | |
---|
| 2126 | if (!m_ClassIsNominal) { |
---|
| 2127 | throw |
---|
| 2128 | new Exception("Can't compute K&B Info score: " + |
---|
| 2129 | "class numeric!"); |
---|
| 2130 | } |
---|
| 2131 | |
---|
| 2132 | if (m_NoPriors) |
---|
| 2133 | return Double.NaN; |
---|
| 2134 | |
---|
| 2135 | return 100.0 * KBInformation() / priorEntropy(); |
---|
| 2136 | } |
---|
| 2137 | |
---|
| 2138 | /** |
---|
| 2139 | * Returns the total entropy for the null model. |
---|
| 2140 | * |
---|
| 2141 | * @return the total null model entropy |
---|
| 2142 | */ |
---|
| 2143 | public final double SFPriorEntropy() { |
---|
| 2144 | |
---|
| 2145 | if (m_NoPriors || !m_ComplexityStatisticsAvailable) |
---|
| 2146 | return Double.NaN; |
---|
| 2147 | |
---|
| 2148 | return m_SumPriorEntropy; |
---|
| 2149 | } |
---|
| 2150 | |
---|
| 2151 | /** |
---|
| 2152 | * Returns the entropy per instance for the null model. |
---|
| 2153 | * |
---|
| 2154 | * @return the null model entropy per instance |
---|
| 2155 | */ |
---|
| 2156 | public final double SFMeanPriorEntropy() { |
---|
| 2157 | |
---|
| 2158 | if (m_NoPriors || !m_ComplexityStatisticsAvailable) |
---|
| 2159 | return Double.NaN; |
---|
| 2160 | |
---|
| 2161 | return m_SumPriorEntropy / m_WithClass; |
---|
| 2162 | } |
---|
| 2163 | |
---|
| 2164 | /** |
---|
| 2165 | * Returns the total entropy for the scheme. |
---|
| 2166 | * |
---|
| 2167 | * @return the total scheme entropy |
---|
| 2168 | */ |
---|
| 2169 | public final double SFSchemeEntropy() { |
---|
| 2170 | |
---|
| 2171 | if (!m_ComplexityStatisticsAvailable) |
---|
| 2172 | return Double.NaN; |
---|
| 2173 | |
---|
| 2174 | return m_SumSchemeEntropy; |
---|
| 2175 | } |
---|
| 2176 | |
---|
| 2177 | /** |
---|
| 2178 | * Returns the entropy per instance for the scheme. |
---|
| 2179 | * |
---|
| 2180 | * @return the scheme entropy per instance |
---|
| 2181 | */ |
---|
| 2182 | public final double SFMeanSchemeEntropy() { |
---|
| 2183 | |
---|
| 2184 | if (!m_ComplexityStatisticsAvailable) |
---|
| 2185 | return Double.NaN; |
---|
| 2186 | |
---|
| 2187 | return m_SumSchemeEntropy / (m_WithClass - m_Unclassified); |
---|
| 2188 | } |
---|
| 2189 | |
---|
| 2190 | /** |
---|
| 2191 | * Returns the total SF, which is the null model entropy minus |
---|
| 2192 | * the scheme entropy. |
---|
| 2193 | * |
---|
| 2194 | * @return the total SF |
---|
| 2195 | */ |
---|
| 2196 | public final double SFEntropyGain() { |
---|
| 2197 | |
---|
| 2198 | if (m_NoPriors || !m_ComplexityStatisticsAvailable) |
---|
| 2199 | return Double.NaN; |
---|
| 2200 | |
---|
| 2201 | return m_SumPriorEntropy - m_SumSchemeEntropy; |
---|
| 2202 | } |
---|
| 2203 | |
---|
| 2204 | /** |
---|
| 2205 | * Returns the SF per instance, which is the null model entropy |
---|
| 2206 | * minus the scheme entropy, per instance. |
---|
| 2207 | * |
---|
| 2208 | * @return the SF per instance |
---|
| 2209 | */ |
---|
| 2210 | public final double SFMeanEntropyGain() { |
---|
| 2211 | |
---|
| 2212 | if (m_NoPriors || !m_ComplexityStatisticsAvailable) |
---|
| 2213 | return Double.NaN; |
---|
| 2214 | |
---|
| 2215 | return (m_SumPriorEntropy - m_SumSchemeEntropy) / |
---|
| 2216 | (m_WithClass - m_Unclassified); |
---|
| 2217 | } |
---|
| 2218 | |
---|
| 2219 | /** |
---|
| 2220 | * Output the cumulative margin distribution as a string suitable |
---|
| 2221 | * for input for gnuplot or similar package. |
---|
| 2222 | * |
---|
| 2223 | * @return the cumulative margin distribution |
---|
| 2224 | * @throws Exception if the class attribute is nominal |
---|
| 2225 | */ |
---|
| 2226 | public String toCumulativeMarginDistributionString() throws Exception { |
---|
| 2227 | |
---|
| 2228 | if (!m_ClassIsNominal) { |
---|
| 2229 | throw new Exception("Class must be nominal for margin distributions"); |
---|
| 2230 | } |
---|
| 2231 | String result = ""; |
---|
| 2232 | double cumulativeCount = 0; |
---|
| 2233 | double margin; |
---|
| 2234 | for(int i = 0; i <= k_MarginResolution; i++) { |
---|
| 2235 | if (m_MarginCounts[i] != 0) { |
---|
| 2236 | cumulativeCount += m_MarginCounts[i]; |
---|
| 2237 | margin = (double)i * 2.0 / k_MarginResolution - 1.0; |
---|
| 2238 | result = result + Utils.doubleToString(margin, 7, 3) + ' ' |
---|
| 2239 | + Utils.doubleToString(cumulativeCount * 100 |
---|
| 2240 | / m_WithClass, 7, 3) + '\n'; |
---|
| 2241 | } else if (i == 0) { |
---|
| 2242 | result = Utils.doubleToString(-1.0, 7, 3) + ' ' |
---|
| 2243 | + Utils.doubleToString(0, 7, 3) + '\n'; |
---|
| 2244 | } |
---|
| 2245 | } |
---|
| 2246 | return result; |
---|
| 2247 | } |
---|
| 2248 | |
---|
| 2249 | /** |
---|
| 2250 | * Calls toSummaryString() with no title and no complexity stats. |
---|
| 2251 | * |
---|
| 2252 | * @return a summary description of the classifier evaluation |
---|
| 2253 | */ |
---|
| 2254 | public String toSummaryString() { |
---|
| 2255 | |
---|
| 2256 | return toSummaryString("", false); |
---|
| 2257 | } |
---|
| 2258 | |
---|
| 2259 | /** |
---|
| 2260 | * Calls toSummaryString() with a default title. |
---|
| 2261 | * |
---|
| 2262 | * @param printComplexityStatistics if true, complexity statistics are |
---|
| 2263 | * returned as well |
---|
| 2264 | * @return the summary string |
---|
| 2265 | */ |
---|
| 2266 | public String toSummaryString(boolean printComplexityStatistics) { |
---|
| 2267 | |
---|
| 2268 | return toSummaryString("=== Summary ===\n", printComplexityStatistics); |
---|
| 2269 | } |
---|
| 2270 | |
---|
| 2271 | /** |
---|
| 2272 | * Outputs the performance statistics in summary form. Lists |
---|
| 2273 | * number (and percentage) of instances classified correctly, |
---|
| 2274 | * incorrectly and unclassified. Outputs the total number of |
---|
| 2275 | * instances classified, and the number of instances (if any) |
---|
| 2276 | * that had no class value provided. |
---|
| 2277 | * |
---|
| 2278 | * @param title the title for the statistics |
---|
| 2279 | * @param printComplexityStatistics if true, complexity statistics are |
---|
| 2280 | * returned as well |
---|
| 2281 | * @return the summary as a String |
---|
| 2282 | */ |
---|
| 2283 | public String toSummaryString(String title, |
---|
| 2284 | boolean printComplexityStatistics) { |
---|
| 2285 | |
---|
| 2286 | StringBuffer text = new StringBuffer(); |
---|
| 2287 | |
---|
| 2288 | if (printComplexityStatistics && m_NoPriors) { |
---|
| 2289 | printComplexityStatistics = false; |
---|
| 2290 | System.err.println("Priors disabled, cannot print complexity statistics!"); |
---|
| 2291 | } |
---|
| 2292 | |
---|
| 2293 | text.append(title + "\n"); |
---|
| 2294 | try { |
---|
| 2295 | if (m_WithClass > 0) { |
---|
| 2296 | if (m_ClassIsNominal) { |
---|
| 2297 | |
---|
| 2298 | text.append("Correctly Classified Instances "); |
---|
| 2299 | text.append(Utils.doubleToString(correct(), 12, 4) + " " + |
---|
| 2300 | Utils.doubleToString(pctCorrect(), |
---|
| 2301 | 12, 4) + " %\n"); |
---|
| 2302 | text.append("Incorrectly Classified Instances "); |
---|
| 2303 | text.append(Utils.doubleToString(incorrect(), 12, 4) + " " + |
---|
| 2304 | Utils.doubleToString(pctIncorrect(), |
---|
| 2305 | 12, 4) + " %\n"); |
---|
| 2306 | text.append("Kappa statistic "); |
---|
| 2307 | text.append(Utils.doubleToString(kappa(), 12, 4) + "\n"); |
---|
| 2308 | |
---|
| 2309 | if (m_CostMatrix != null) { |
---|
| 2310 | text.append("Total Cost "); |
---|
| 2311 | text.append(Utils.doubleToString(totalCost(), 12, 4) + "\n"); |
---|
| 2312 | text.append("Average Cost "); |
---|
| 2313 | text.append(Utils.doubleToString(avgCost(), 12, 4) + "\n"); |
---|
| 2314 | } |
---|
| 2315 | if (printComplexityStatistics) { |
---|
| 2316 | text.append("K&B Relative Info Score "); |
---|
| 2317 | text.append(Utils.doubleToString(KBRelativeInformation(), 12, 4) |
---|
| 2318 | + " %\n"); |
---|
| 2319 | text.append("K&B Information Score "); |
---|
| 2320 | text.append(Utils.doubleToString(KBInformation(), 12, 4) |
---|
| 2321 | + " bits"); |
---|
| 2322 | text.append(Utils.doubleToString(KBMeanInformation(), 12, 4) |
---|
| 2323 | + " bits/instance\n"); |
---|
| 2324 | } |
---|
| 2325 | } else { |
---|
| 2326 | text.append("Correlation coefficient "); |
---|
| 2327 | text.append(Utils.doubleToString(correlationCoefficient(), 12 , 4) + |
---|
| 2328 | "\n"); |
---|
| 2329 | } |
---|
| 2330 | if (printComplexityStatistics && m_ComplexityStatisticsAvailable) { |
---|
| 2331 | text.append("Class complexity | order 0 "); |
---|
| 2332 | text.append(Utils.doubleToString(SFPriorEntropy(), 12, 4) |
---|
| 2333 | + " bits"); |
---|
| 2334 | text.append(Utils.doubleToString(SFMeanPriorEntropy(), 12, 4) |
---|
| 2335 | + " bits/instance\n"); |
---|
| 2336 | text.append("Class complexity | scheme "); |
---|
| 2337 | text.append(Utils.doubleToString(SFSchemeEntropy(), 12, 4) |
---|
| 2338 | + " bits"); |
---|
| 2339 | text.append(Utils.doubleToString(SFMeanSchemeEntropy(), 12, 4) |
---|
| 2340 | + " bits/instance\n"); |
---|
| 2341 | text.append("Complexity improvement (Sf) "); |
---|
| 2342 | text.append(Utils.doubleToString(SFEntropyGain(), 12, 4) + " bits"); |
---|
| 2343 | text.append(Utils.doubleToString(SFMeanEntropyGain(), 12, 4) |
---|
| 2344 | + " bits/instance\n"); |
---|
| 2345 | } |
---|
| 2346 | |
---|
| 2347 | text.append("Mean absolute error "); |
---|
| 2348 | text.append(Utils.doubleToString(meanAbsoluteError(), 12, 4) |
---|
| 2349 | + "\n"); |
---|
| 2350 | text.append("Root mean squared error "); |
---|
| 2351 | text.append(Utils. |
---|
| 2352 | doubleToString(rootMeanSquaredError(), 12, 4) |
---|
| 2353 | + "\n"); |
---|
| 2354 | if (!m_NoPriors) { |
---|
| 2355 | text.append("Relative absolute error "); |
---|
| 2356 | text.append(Utils.doubleToString(relativeAbsoluteError(), |
---|
| 2357 | 12, 4) + " %\n"); |
---|
| 2358 | text.append("Root relative squared error "); |
---|
| 2359 | text.append(Utils.doubleToString(rootRelativeSquaredError(), |
---|
| 2360 | 12, 4) + " %\n"); |
---|
| 2361 | } |
---|
| 2362 | if (m_CoverageStatisticsAvailable) { |
---|
| 2363 | text.append("Coverage of cases (" + Utils.doubleToString(m_ConfLevel, 4, 2) + " level) "); |
---|
| 2364 | text.append(Utils.doubleToString(coverageOfTestCasesByPredictedRegions(), |
---|
| 2365 | 12, 4) + " %\n"); |
---|
| 2366 | if (!m_NoPriors) { |
---|
| 2367 | text.append("Mean rel. region size (" + Utils.doubleToString(m_ConfLevel, 4, 2) + " level) "); |
---|
| 2368 | text.append(Utils.doubleToString(sizeOfPredictedRegions(), 12, 4) + " %\n"); |
---|
| 2369 | } |
---|
| 2370 | } |
---|
| 2371 | } |
---|
| 2372 | if (Utils.gr(unclassified(), 0)) { |
---|
| 2373 | text.append("UnClassified Instances "); |
---|
| 2374 | text.append(Utils.doubleToString(unclassified(), 12,4) + " " + |
---|
| 2375 | Utils.doubleToString(pctUnclassified(), |
---|
| 2376 | 12, 4) + " %\n"); |
---|
| 2377 | } |
---|
| 2378 | text.append("Total Number of Instances "); |
---|
| 2379 | text.append(Utils.doubleToString(m_WithClass, 12, 4) + "\n"); |
---|
| 2380 | if (m_MissingClass > 0) { |
---|
| 2381 | text.append("Ignored Class Unknown Instances "); |
---|
| 2382 | text.append(Utils.doubleToString(m_MissingClass, 12, 4) + "\n"); |
---|
| 2383 | } |
---|
| 2384 | } catch (Exception ex) { |
---|
| 2385 | // Should never occur since the class is known to be nominal |
---|
| 2386 | // here |
---|
| 2387 | System.err.println("Arggh - Must be a bug in Evaluation class"); |
---|
| 2388 | } |
---|
| 2389 | |
---|
| 2390 | return text.toString(); |
---|
| 2391 | } |
---|
| 2392 | |
---|
| 2393 | /** |
---|
| 2394 | * Calls toMatrixString() with a default title. |
---|
| 2395 | * |
---|
| 2396 | * @return the confusion matrix as a string |
---|
| 2397 | * @throws Exception if the class is numeric |
---|
| 2398 | */ |
---|
| 2399 | public String toMatrixString() throws Exception { |
---|
| 2400 | |
---|
| 2401 | return toMatrixString("=== Confusion Matrix ===\n"); |
---|
| 2402 | } |
---|
| 2403 | |
---|
| 2404 | /** |
---|
| 2405 | * Outputs the performance statistics as a classification confusion |
---|
| 2406 | * matrix. For each class value, shows the distribution of |
---|
| 2407 | * predicted class values. |
---|
| 2408 | * |
---|
| 2409 | * @param title the title for the confusion matrix |
---|
| 2410 | * @return the confusion matrix as a String |
---|
| 2411 | * @throws Exception if the class is numeric |
---|
| 2412 | */ |
---|
| 2413 | public String toMatrixString(String title) throws Exception { |
---|
| 2414 | |
---|
| 2415 | StringBuffer text = new StringBuffer(); |
---|
| 2416 | char [] IDChars = {'a','b','c','d','e','f','g','h','i','j', |
---|
| 2417 | 'k','l','m','n','o','p','q','r','s','t', |
---|
| 2418 | 'u','v','w','x','y','z'}; |
---|
| 2419 | int IDWidth; |
---|
| 2420 | boolean fractional = false; |
---|
| 2421 | |
---|
| 2422 | if (!m_ClassIsNominal) { |
---|
| 2423 | throw new Exception("Evaluation: No confusion matrix possible!"); |
---|
| 2424 | } |
---|
| 2425 | |
---|
| 2426 | // Find the maximum value in the matrix |
---|
| 2427 | // and check for fractional display requirement |
---|
| 2428 | double maxval = 0; |
---|
| 2429 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2430 | for(int j = 0; j < m_NumClasses; j++) { |
---|
| 2431 | double current = m_ConfusionMatrix[i][j]; |
---|
| 2432 | if (current < 0) { |
---|
| 2433 | current *= -10; |
---|
| 2434 | } |
---|
| 2435 | if (current > maxval) { |
---|
| 2436 | maxval = current; |
---|
| 2437 | } |
---|
| 2438 | double fract = current - Math.rint(current); |
---|
| 2439 | if (!fractional && ((Math.log(fract) / Math.log(10)) >= -2)) { |
---|
| 2440 | fractional = true; |
---|
| 2441 | } |
---|
| 2442 | } |
---|
| 2443 | } |
---|
| 2444 | |
---|
| 2445 | IDWidth = 1 + Math.max((int)(Math.log(maxval) / Math.log(10) |
---|
| 2446 | + (fractional ? 3 : 0)), |
---|
| 2447 | (int)(Math.log(m_NumClasses) / |
---|
| 2448 | Math.log(IDChars.length))); |
---|
| 2449 | text.append(title).append("\n"); |
---|
| 2450 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2451 | if (fractional) { |
---|
| 2452 | text.append(" ").append(num2ShortID(i,IDChars,IDWidth - 3)) |
---|
| 2453 | .append(" "); |
---|
| 2454 | } else { |
---|
| 2455 | text.append(" ").append(num2ShortID(i,IDChars,IDWidth)); |
---|
| 2456 | } |
---|
| 2457 | } |
---|
| 2458 | text.append(" <-- classified as\n"); |
---|
| 2459 | for(int i = 0; i< m_NumClasses; i++) { |
---|
| 2460 | for(int j = 0; j < m_NumClasses; j++) { |
---|
| 2461 | text.append(" ").append( |
---|
| 2462 | Utils.doubleToString(m_ConfusionMatrix[i][j], |
---|
| 2463 | IDWidth, |
---|
| 2464 | (fractional ? 2 : 0))); |
---|
| 2465 | } |
---|
| 2466 | text.append(" | ").append(num2ShortID(i,IDChars,IDWidth)) |
---|
| 2467 | .append(" = ").append(m_ClassNames[i]).append("\n"); |
---|
| 2468 | } |
---|
| 2469 | return text.toString(); |
---|
| 2470 | } |
---|
| 2471 | |
---|
| 2472 | /** |
---|
| 2473 | * Generates a breakdown of the accuracy for each class (with default title), |
---|
| 2474 | * incorporating various information-retrieval statistics, such as |
---|
| 2475 | * true/false positive rate, precision/recall/F-Measure. Should be |
---|
| 2476 | * useful for ROC curves, recall/precision curves. |
---|
| 2477 | * |
---|
| 2478 | * @return the statistics presented as a string |
---|
| 2479 | * @throws Exception if class is not nominal |
---|
| 2480 | */ |
---|
| 2481 | public String toClassDetailsString() throws Exception { |
---|
| 2482 | |
---|
| 2483 | return toClassDetailsString("=== Detailed Accuracy By Class ===\n"); |
---|
| 2484 | } |
---|
| 2485 | |
---|
| 2486 | /** |
---|
| 2487 | * Generates a breakdown of the accuracy for each class, |
---|
| 2488 | * incorporating various information-retrieval statistics, such as |
---|
| 2489 | * true/false positive rate, precision/recall/F-Measure. Should be |
---|
| 2490 | * useful for ROC curves, recall/precision curves. |
---|
| 2491 | * |
---|
| 2492 | * @param title the title to prepend the stats string with |
---|
| 2493 | * @return the statistics presented as a string |
---|
| 2494 | * @throws Exception if class is not nominal |
---|
| 2495 | */ |
---|
| 2496 | public String toClassDetailsString(String title) throws Exception { |
---|
| 2497 | |
---|
| 2498 | if (!m_ClassIsNominal) { |
---|
| 2499 | throw new Exception("Evaluation: No per class statistics possible!"); |
---|
| 2500 | } |
---|
| 2501 | |
---|
| 2502 | StringBuffer text = new StringBuffer(title |
---|
| 2503 | + "\n TP Rate FP Rate" |
---|
| 2504 | + " Precision Recall" |
---|
| 2505 | + " F-Measure ROC Area Class\n"); |
---|
| 2506 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2507 | text.append(" " + Utils.doubleToString(truePositiveRate(i), 7, 3)) |
---|
| 2508 | .append(" "); |
---|
| 2509 | text.append(Utils.doubleToString(falsePositiveRate(i), 7, 3)) |
---|
| 2510 | .append(" "); |
---|
| 2511 | text.append(Utils.doubleToString(precision(i), 7, 3)) |
---|
| 2512 | .append(" "); |
---|
| 2513 | text.append(Utils.doubleToString(recall(i), 7, 3)) |
---|
| 2514 | .append(" "); |
---|
| 2515 | text.append(Utils.doubleToString(fMeasure(i), 7, 3)) |
---|
| 2516 | .append(" "); |
---|
| 2517 | |
---|
| 2518 | double rocVal = areaUnderROC(i); |
---|
| 2519 | if (Utils.isMissingValue(rocVal)) { |
---|
| 2520 | text.append(" ? ") |
---|
| 2521 | .append(" "); |
---|
| 2522 | } else { |
---|
| 2523 | text.append(Utils.doubleToString(rocVal, 7, 3)) |
---|
| 2524 | .append(" "); |
---|
| 2525 | } |
---|
| 2526 | text.append(m_ClassNames[i]).append('\n'); |
---|
| 2527 | } |
---|
| 2528 | |
---|
| 2529 | text.append("Weighted Avg. " + Utils.doubleToString(weightedTruePositiveRate(), 7, 3)); |
---|
| 2530 | text.append(" " + Utils.doubleToString(weightedFalsePositiveRate(), 7 ,3)); |
---|
| 2531 | text.append(" " + Utils.doubleToString(weightedPrecision(), 7 ,3)); |
---|
| 2532 | text.append(" " + Utils.doubleToString(weightedRecall(), 7 ,3)); |
---|
| 2533 | text.append(" " + Utils.doubleToString(weightedFMeasure(), 7 ,3)); |
---|
| 2534 | text.append(" " + Utils.doubleToString(weightedAreaUnderROC(), 7 ,3)); |
---|
| 2535 | text.append("\n"); |
---|
| 2536 | |
---|
| 2537 | return text.toString(); |
---|
| 2538 | } |
---|
| 2539 | |
---|
| 2540 | /** |
---|
| 2541 | * Calculate the number of true positives with respect to a particular class. |
---|
| 2542 | * This is defined as<p/> |
---|
| 2543 | * <pre> |
---|
| 2544 | * correctly classified positives |
---|
| 2545 | * </pre> |
---|
| 2546 | * |
---|
| 2547 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2548 | * @return the true positive rate |
---|
| 2549 | */ |
---|
| 2550 | public double numTruePositives(int classIndex) { |
---|
| 2551 | |
---|
| 2552 | double correct = 0; |
---|
| 2553 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2554 | if (j == classIndex) { |
---|
| 2555 | correct += m_ConfusionMatrix[classIndex][j]; |
---|
| 2556 | } |
---|
| 2557 | } |
---|
| 2558 | return correct; |
---|
| 2559 | } |
---|
| 2560 | |
---|
| 2561 | /** |
---|
| 2562 | * Calculate the true positive rate with respect to a particular class. |
---|
| 2563 | * This is defined as<p/> |
---|
| 2564 | * <pre> |
---|
| 2565 | * correctly classified positives |
---|
| 2566 | * ------------------------------ |
---|
| 2567 | * total positives |
---|
| 2568 | * </pre> |
---|
| 2569 | * |
---|
| 2570 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2571 | * @return the true positive rate |
---|
| 2572 | */ |
---|
| 2573 | public double truePositiveRate(int classIndex) { |
---|
| 2574 | |
---|
| 2575 | double correct = 0, total = 0; |
---|
| 2576 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2577 | if (j == classIndex) { |
---|
| 2578 | correct += m_ConfusionMatrix[classIndex][j]; |
---|
| 2579 | } |
---|
| 2580 | total += m_ConfusionMatrix[classIndex][j]; |
---|
| 2581 | } |
---|
| 2582 | if (total == 0) { |
---|
| 2583 | return 0; |
---|
| 2584 | } |
---|
| 2585 | return correct / total; |
---|
| 2586 | } |
---|
| 2587 | |
---|
| 2588 | /** |
---|
| 2589 | * Calculates the weighted (by class size) true positive rate. |
---|
| 2590 | * |
---|
| 2591 | * @return the weighted true positive rate. |
---|
| 2592 | */ |
---|
| 2593 | public double weightedTruePositiveRate() { |
---|
| 2594 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2595 | double classCountSum = 0; |
---|
| 2596 | |
---|
| 2597 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2598 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2599 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2600 | } |
---|
| 2601 | classCountSum += classCounts[i]; |
---|
| 2602 | } |
---|
| 2603 | |
---|
| 2604 | double truePosTotal = 0; |
---|
| 2605 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2606 | double temp = truePositiveRate(i); |
---|
| 2607 | truePosTotal += (temp * classCounts[i]); |
---|
| 2608 | } |
---|
| 2609 | |
---|
| 2610 | return truePosTotal / classCountSum; |
---|
| 2611 | } |
---|
| 2612 | |
---|
| 2613 | /** |
---|
| 2614 | * Calculate the number of true negatives with respect to a particular class. |
---|
| 2615 | * This is defined as<p/> |
---|
| 2616 | * <pre> |
---|
| 2617 | * correctly classified negatives |
---|
| 2618 | * </pre> |
---|
| 2619 | * |
---|
| 2620 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2621 | * @return the true positive rate |
---|
| 2622 | */ |
---|
| 2623 | public double numTrueNegatives(int classIndex) { |
---|
| 2624 | |
---|
| 2625 | double correct = 0; |
---|
| 2626 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2627 | if (i != classIndex) { |
---|
| 2628 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2629 | if (j != classIndex) { |
---|
| 2630 | correct += m_ConfusionMatrix[i][j]; |
---|
| 2631 | } |
---|
| 2632 | } |
---|
| 2633 | } |
---|
| 2634 | } |
---|
| 2635 | return correct; |
---|
| 2636 | } |
---|
| 2637 | |
---|
| 2638 | /** |
---|
| 2639 | * Calculate the true negative rate with respect to a particular class. |
---|
| 2640 | * This is defined as<p/> |
---|
| 2641 | * <pre> |
---|
| 2642 | * correctly classified negatives |
---|
| 2643 | * ------------------------------ |
---|
| 2644 | * total negatives |
---|
| 2645 | * </pre> |
---|
| 2646 | * |
---|
| 2647 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2648 | * @return the true positive rate |
---|
| 2649 | */ |
---|
| 2650 | public double trueNegativeRate(int classIndex) { |
---|
| 2651 | |
---|
| 2652 | double correct = 0, total = 0; |
---|
| 2653 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2654 | if (i != classIndex) { |
---|
| 2655 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2656 | if (j != classIndex) { |
---|
| 2657 | correct += m_ConfusionMatrix[i][j]; |
---|
| 2658 | } |
---|
| 2659 | total += m_ConfusionMatrix[i][j]; |
---|
| 2660 | } |
---|
| 2661 | } |
---|
| 2662 | } |
---|
| 2663 | if (total == 0) { |
---|
| 2664 | return 0; |
---|
| 2665 | } |
---|
| 2666 | return correct / total; |
---|
| 2667 | } |
---|
| 2668 | |
---|
| 2669 | /** |
---|
| 2670 | * Calculates the weighted (by class size) true negative rate. |
---|
| 2671 | * |
---|
| 2672 | * @return the weighted true negative rate. |
---|
| 2673 | */ |
---|
| 2674 | public double weightedTrueNegativeRate() { |
---|
| 2675 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2676 | double classCountSum = 0; |
---|
| 2677 | |
---|
| 2678 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2679 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2680 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2681 | } |
---|
| 2682 | classCountSum += classCounts[i]; |
---|
| 2683 | } |
---|
| 2684 | |
---|
| 2685 | double trueNegTotal = 0; |
---|
| 2686 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2687 | double temp = trueNegativeRate(i); |
---|
| 2688 | trueNegTotal += (temp * classCounts[i]); |
---|
| 2689 | } |
---|
| 2690 | |
---|
| 2691 | return trueNegTotal / classCountSum; |
---|
| 2692 | } |
---|
| 2693 | |
---|
| 2694 | /** |
---|
| 2695 | * Calculate number of false positives with respect to a particular class. |
---|
| 2696 | * This is defined as<p/> |
---|
| 2697 | * <pre> |
---|
| 2698 | * incorrectly classified negatives |
---|
| 2699 | * </pre> |
---|
| 2700 | * |
---|
| 2701 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2702 | * @return the false positive rate |
---|
| 2703 | */ |
---|
| 2704 | public double numFalsePositives(int classIndex) { |
---|
| 2705 | |
---|
| 2706 | double incorrect = 0; |
---|
| 2707 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2708 | if (i != classIndex) { |
---|
| 2709 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2710 | if (j == classIndex) { |
---|
| 2711 | incorrect += m_ConfusionMatrix[i][j]; |
---|
| 2712 | } |
---|
| 2713 | } |
---|
| 2714 | } |
---|
| 2715 | } |
---|
| 2716 | return incorrect; |
---|
| 2717 | } |
---|
| 2718 | |
---|
| 2719 | /** |
---|
| 2720 | * Calculate the false positive rate with respect to a particular class. |
---|
| 2721 | * This is defined as<p/> |
---|
| 2722 | * <pre> |
---|
| 2723 | * incorrectly classified negatives |
---|
| 2724 | * -------------------------------- |
---|
| 2725 | * total negatives |
---|
| 2726 | * </pre> |
---|
| 2727 | * |
---|
| 2728 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2729 | * @return the false positive rate |
---|
| 2730 | */ |
---|
| 2731 | public double falsePositiveRate(int classIndex) { |
---|
| 2732 | |
---|
| 2733 | double incorrect = 0, total = 0; |
---|
| 2734 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2735 | if (i != classIndex) { |
---|
| 2736 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2737 | if (j == classIndex) { |
---|
| 2738 | incorrect += m_ConfusionMatrix[i][j]; |
---|
| 2739 | } |
---|
| 2740 | total += m_ConfusionMatrix[i][j]; |
---|
| 2741 | } |
---|
| 2742 | } |
---|
| 2743 | } |
---|
| 2744 | if (total == 0) { |
---|
| 2745 | return 0; |
---|
| 2746 | } |
---|
| 2747 | return incorrect / total; |
---|
| 2748 | } |
---|
| 2749 | |
---|
| 2750 | /** |
---|
| 2751 | * Calculates the weighted (by class size) false positive rate. |
---|
| 2752 | * |
---|
| 2753 | * @return the weighted false positive rate. |
---|
| 2754 | */ |
---|
| 2755 | public double weightedFalsePositiveRate() { |
---|
| 2756 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2757 | double classCountSum = 0; |
---|
| 2758 | |
---|
| 2759 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2760 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2761 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2762 | } |
---|
| 2763 | classCountSum += classCounts[i]; |
---|
| 2764 | } |
---|
| 2765 | |
---|
| 2766 | double falsePosTotal = 0; |
---|
| 2767 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2768 | double temp = falsePositiveRate(i); |
---|
| 2769 | falsePosTotal += (temp * classCounts[i]); |
---|
| 2770 | } |
---|
| 2771 | |
---|
| 2772 | return falsePosTotal / classCountSum; |
---|
| 2773 | } |
---|
| 2774 | |
---|
| 2775 | |
---|
| 2776 | |
---|
| 2777 | /** |
---|
| 2778 | * Calculate number of false negatives with respect to a particular class. |
---|
| 2779 | * This is defined as<p/> |
---|
| 2780 | * <pre> |
---|
| 2781 | * incorrectly classified positives |
---|
| 2782 | * </pre> |
---|
| 2783 | * |
---|
| 2784 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2785 | * @return the false positive rate |
---|
| 2786 | */ |
---|
| 2787 | public double numFalseNegatives(int classIndex) { |
---|
| 2788 | |
---|
| 2789 | double incorrect = 0; |
---|
| 2790 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2791 | if (i == classIndex) { |
---|
| 2792 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2793 | if (j != classIndex) { |
---|
| 2794 | incorrect += m_ConfusionMatrix[i][j]; |
---|
| 2795 | } |
---|
| 2796 | } |
---|
| 2797 | } |
---|
| 2798 | } |
---|
| 2799 | return incorrect; |
---|
| 2800 | } |
---|
| 2801 | |
---|
| 2802 | /** |
---|
| 2803 | * Calculate the false negative rate with respect to a particular class. |
---|
| 2804 | * This is defined as<p/> |
---|
| 2805 | * <pre> |
---|
| 2806 | * incorrectly classified positives |
---|
| 2807 | * -------------------------------- |
---|
| 2808 | * total positives |
---|
| 2809 | * </pre> |
---|
| 2810 | * |
---|
| 2811 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2812 | * @return the false positive rate |
---|
| 2813 | */ |
---|
| 2814 | public double falseNegativeRate(int classIndex) { |
---|
| 2815 | |
---|
| 2816 | double incorrect = 0, total = 0; |
---|
| 2817 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2818 | if (i == classIndex) { |
---|
| 2819 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2820 | if (j != classIndex) { |
---|
| 2821 | incorrect += m_ConfusionMatrix[i][j]; |
---|
| 2822 | } |
---|
| 2823 | total += m_ConfusionMatrix[i][j]; |
---|
| 2824 | } |
---|
| 2825 | } |
---|
| 2826 | } |
---|
| 2827 | if (total == 0) { |
---|
| 2828 | return 0; |
---|
| 2829 | } |
---|
| 2830 | return incorrect / total; |
---|
| 2831 | } |
---|
| 2832 | |
---|
| 2833 | /** |
---|
| 2834 | * Calculates the weighted (by class size) false negative rate. |
---|
| 2835 | * |
---|
| 2836 | * @return the weighted false negative rate. |
---|
| 2837 | */ |
---|
| 2838 | public double weightedFalseNegativeRate() { |
---|
| 2839 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2840 | double classCountSum = 0; |
---|
| 2841 | |
---|
| 2842 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2843 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2844 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2845 | } |
---|
| 2846 | classCountSum += classCounts[i]; |
---|
| 2847 | } |
---|
| 2848 | |
---|
| 2849 | double falseNegTotal = 0; |
---|
| 2850 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2851 | double temp = falseNegativeRate(i); |
---|
| 2852 | falseNegTotal += (temp * classCounts[i]); |
---|
| 2853 | } |
---|
| 2854 | |
---|
| 2855 | return falseNegTotal / classCountSum; |
---|
| 2856 | } |
---|
| 2857 | |
---|
| 2858 | /** |
---|
| 2859 | * Calculate the recall with respect to a particular class. |
---|
| 2860 | * This is defined as<p/> |
---|
| 2861 | * <pre> |
---|
| 2862 | * correctly classified positives |
---|
| 2863 | * ------------------------------ |
---|
| 2864 | * total positives |
---|
| 2865 | * </pre><p/> |
---|
| 2866 | * (Which is also the same as the truePositiveRate.) |
---|
| 2867 | * |
---|
| 2868 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2869 | * @return the recall |
---|
| 2870 | */ |
---|
| 2871 | public double recall(int classIndex) { |
---|
| 2872 | |
---|
| 2873 | return truePositiveRate(classIndex); |
---|
| 2874 | } |
---|
| 2875 | |
---|
| 2876 | /** |
---|
| 2877 | * Calculates the weighted (by class size) recall. |
---|
| 2878 | * |
---|
| 2879 | * @return the weighted recall. |
---|
| 2880 | */ |
---|
| 2881 | public double weightedRecall() { |
---|
| 2882 | return weightedTruePositiveRate(); |
---|
| 2883 | } |
---|
| 2884 | |
---|
| 2885 | /** |
---|
| 2886 | * Calculate the precision with respect to a particular class. |
---|
| 2887 | * This is defined as<p/> |
---|
| 2888 | * <pre> |
---|
| 2889 | * correctly classified positives |
---|
| 2890 | * ------------------------------ |
---|
| 2891 | * total predicted as positive |
---|
| 2892 | * </pre> |
---|
| 2893 | * |
---|
| 2894 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2895 | * @return the precision |
---|
| 2896 | */ |
---|
| 2897 | public double precision(int classIndex) { |
---|
| 2898 | |
---|
| 2899 | double correct = 0, total = 0; |
---|
| 2900 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2901 | if (i == classIndex) { |
---|
| 2902 | correct += m_ConfusionMatrix[i][classIndex]; |
---|
| 2903 | } |
---|
| 2904 | total += m_ConfusionMatrix[i][classIndex]; |
---|
| 2905 | } |
---|
| 2906 | if (total == 0) { |
---|
| 2907 | return 0; |
---|
| 2908 | } |
---|
| 2909 | return correct / total; |
---|
| 2910 | } |
---|
| 2911 | |
---|
| 2912 | /** |
---|
| 2913 | * Calculates the weighted (by class size) false precision. |
---|
| 2914 | * |
---|
| 2915 | * @return the weighted precision. |
---|
| 2916 | */ |
---|
| 2917 | public double weightedPrecision() { |
---|
| 2918 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2919 | double classCountSum = 0; |
---|
| 2920 | |
---|
| 2921 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2922 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2923 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2924 | } |
---|
| 2925 | classCountSum += classCounts[i]; |
---|
| 2926 | } |
---|
| 2927 | |
---|
| 2928 | double precisionTotal = 0; |
---|
| 2929 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2930 | double temp = precision(i); |
---|
| 2931 | precisionTotal += (temp * classCounts[i]); |
---|
| 2932 | } |
---|
| 2933 | |
---|
| 2934 | return precisionTotal / classCountSum; |
---|
| 2935 | } |
---|
| 2936 | |
---|
| 2937 | /** |
---|
| 2938 | * Calculate the F-Measure with respect to a particular class. |
---|
| 2939 | * This is defined as<p/> |
---|
| 2940 | * <pre> |
---|
| 2941 | * 2 * recall * precision |
---|
| 2942 | * ---------------------- |
---|
| 2943 | * recall + precision |
---|
| 2944 | * </pre> |
---|
| 2945 | * |
---|
| 2946 | * @param classIndex the index of the class to consider as "positive" |
---|
| 2947 | * @return the F-Measure |
---|
| 2948 | */ |
---|
| 2949 | public double fMeasure(int classIndex) { |
---|
| 2950 | |
---|
| 2951 | double precision = precision(classIndex); |
---|
| 2952 | double recall = recall(classIndex); |
---|
| 2953 | if ((precision + recall) == 0) { |
---|
| 2954 | return 0; |
---|
| 2955 | } |
---|
| 2956 | return 2 * precision * recall / (precision + recall); |
---|
| 2957 | } |
---|
| 2958 | |
---|
| 2959 | /** |
---|
| 2960 | * Calculates the macro weighted (by class size) average |
---|
| 2961 | * F-Measure. |
---|
| 2962 | * |
---|
| 2963 | * @return the weighted F-Measure. |
---|
| 2964 | */ |
---|
| 2965 | public double weightedFMeasure() { |
---|
| 2966 | double[] classCounts = new double[m_NumClasses]; |
---|
| 2967 | double classCountSum = 0; |
---|
| 2968 | |
---|
| 2969 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 2970 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 2971 | classCounts[i] += m_ConfusionMatrix[i][j]; |
---|
| 2972 | } |
---|
| 2973 | classCountSum += classCounts[i]; |
---|
| 2974 | } |
---|
| 2975 | |
---|
| 2976 | double fMeasureTotal = 0; |
---|
| 2977 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 2978 | double temp = fMeasure(i); |
---|
| 2979 | fMeasureTotal += (temp * classCounts[i]); |
---|
| 2980 | } |
---|
| 2981 | |
---|
| 2982 | return fMeasureTotal / classCountSum; |
---|
| 2983 | } |
---|
| 2984 | |
---|
| 2985 | /** |
---|
| 2986 | * Unweighted macro-averaged F-measure. If some classes not present in the |
---|
| 2987 | * test set, they're just skipped (since recall is undefined there anyway) . |
---|
| 2988 | * |
---|
| 2989 | * @return unweighted macro-averaged F-measure. |
---|
| 2990 | * */ |
---|
| 2991 | public double unweightedMacroFmeasure() { |
---|
| 2992 | weka.experiment.Stats rr = new weka.experiment.Stats(); |
---|
| 2993 | for (int c = 0; c < m_NumClasses; c++) { |
---|
| 2994 | // skip if no testing positive cases of this class |
---|
| 2995 | if (numTruePositives(c)+numFalseNegatives(c) > 0) { |
---|
| 2996 | rr.add(fMeasure(c)); |
---|
| 2997 | } |
---|
| 2998 | } |
---|
| 2999 | rr.calculateDerived(); |
---|
| 3000 | return rr.mean; |
---|
| 3001 | } |
---|
| 3002 | |
---|
| 3003 | /** |
---|
| 3004 | * Unweighted micro-averaged F-measure. If some classes not present in the |
---|
| 3005 | * test set, they have no effect. |
---|
| 3006 | * |
---|
| 3007 | * Note: if the test set is *single-label*, then this is the same as accuracy. |
---|
| 3008 | * |
---|
| 3009 | * @return unweighted micro-averaged F-measure. |
---|
| 3010 | */ |
---|
| 3011 | public double unweightedMicroFmeasure() { |
---|
| 3012 | double tp = 0; |
---|
| 3013 | double fn = 0; |
---|
| 3014 | double fp = 0; |
---|
| 3015 | for (int c = 0; c < m_NumClasses; c++) { |
---|
| 3016 | tp += numTruePositives(c); |
---|
| 3017 | fn += numFalseNegatives(c); |
---|
| 3018 | fp += numFalsePositives(c); |
---|
| 3019 | } |
---|
| 3020 | return 2*tp / (2*tp + fn + fp); |
---|
| 3021 | } |
---|
| 3022 | |
---|
| 3023 | /** |
---|
| 3024 | * Sets the class prior probabilities. |
---|
| 3025 | * |
---|
| 3026 | * @param train the training instances used to determine the prior probabilities |
---|
| 3027 | * @throws Exception if the class attribute of the instances is not set |
---|
| 3028 | */ |
---|
| 3029 | public void setPriors(Instances train) throws Exception { |
---|
| 3030 | |
---|
| 3031 | m_NoPriors = false; |
---|
| 3032 | |
---|
| 3033 | if (!m_ClassIsNominal) { |
---|
| 3034 | |
---|
| 3035 | m_NumTrainClassVals = 0; |
---|
| 3036 | m_TrainClassVals = null; |
---|
| 3037 | m_TrainClassWeights = null; |
---|
| 3038 | m_PriorEstimator = null; |
---|
| 3039 | |
---|
| 3040 | m_MinTarget = Double.MAX_VALUE; |
---|
| 3041 | m_MaxTarget = -Double.MAX_VALUE; |
---|
| 3042 | |
---|
| 3043 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 3044 | Instance currentInst = train.instance(i); |
---|
| 3045 | if (!currentInst.classIsMissing()) { |
---|
| 3046 | addNumericTrainClass(currentInst.classValue(), currentInst.weight()); |
---|
| 3047 | } |
---|
| 3048 | } |
---|
| 3049 | |
---|
| 3050 | m_ClassPriors[0] = m_ClassPriorsSum = 0; |
---|
| 3051 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 3052 | if (!train.instance(i).classIsMissing()) { |
---|
| 3053 | m_ClassPriors[0] += train.instance(i).classValue() * train.instance(i).weight(); |
---|
| 3054 | m_ClassPriorsSum += train.instance(i).weight(); |
---|
| 3055 | } |
---|
| 3056 | } |
---|
| 3057 | |
---|
| 3058 | } else { |
---|
| 3059 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 3060 | m_ClassPriors[i] = 1; |
---|
| 3061 | } |
---|
| 3062 | m_ClassPriorsSum = m_NumClasses; |
---|
| 3063 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 3064 | if (!train.instance(i).classIsMissing()) { |
---|
| 3065 | m_ClassPriors[(int)train.instance(i).classValue()] += |
---|
| 3066 | train.instance(i).weight(); |
---|
| 3067 | m_ClassPriorsSum += train.instance(i).weight(); |
---|
| 3068 | } |
---|
| 3069 | } |
---|
| 3070 | m_MaxTarget = m_NumClasses; |
---|
| 3071 | m_MinTarget = 0; |
---|
| 3072 | } |
---|
| 3073 | } |
---|
| 3074 | |
---|
| 3075 | /** |
---|
| 3076 | * Get the current weighted class counts. |
---|
| 3077 | * |
---|
| 3078 | * @return the weighted class counts |
---|
| 3079 | */ |
---|
| 3080 | public double [] getClassPriors() { |
---|
| 3081 | return m_ClassPriors; |
---|
| 3082 | } |
---|
| 3083 | |
---|
| 3084 | /** |
---|
| 3085 | * Updates the class prior probabilities or the mean respectively (when incrementally |
---|
| 3086 | * training). |
---|
| 3087 | * |
---|
| 3088 | * @param instance the new training instance seen |
---|
| 3089 | * @throws Exception if the class of the instance is not set |
---|
| 3090 | */ |
---|
| 3091 | public void updatePriors(Instance instance) throws Exception { |
---|
| 3092 | if (!instance.classIsMissing()) { |
---|
| 3093 | if (!m_ClassIsNominal) { |
---|
| 3094 | addNumericTrainClass(instance.classValue(), instance.weight()); |
---|
| 3095 | m_ClassPriors[0] += instance.classValue() * instance.weight(); |
---|
| 3096 | m_ClassPriorsSum += instance.weight(); |
---|
| 3097 | } else { |
---|
| 3098 | m_ClassPriors[(int)instance.classValue()] += instance.weight(); |
---|
| 3099 | m_ClassPriorsSum += instance.weight(); |
---|
| 3100 | } |
---|
| 3101 | } |
---|
| 3102 | } |
---|
| 3103 | |
---|
| 3104 | /** |
---|
| 3105 | * disables the use of priors, e.g., in case of de-serialized schemes |
---|
| 3106 | * that have no access to the original training set, but are evaluated |
---|
| 3107 | * on a set set. |
---|
| 3108 | */ |
---|
| 3109 | public void useNoPriors() { |
---|
| 3110 | m_NoPriors = true; |
---|
| 3111 | } |
---|
| 3112 | |
---|
| 3113 | /** |
---|
| 3114 | * Tests whether the current evaluation object is equal to another |
---|
| 3115 | * evaluation object. |
---|
| 3116 | * |
---|
| 3117 | * @param obj the object to compare against |
---|
| 3118 | * @return true if the two objects are equal |
---|
| 3119 | */ |
---|
| 3120 | public boolean equals(Object obj) { |
---|
| 3121 | |
---|
| 3122 | if ((obj == null) || !(obj.getClass().equals(this.getClass()))) { |
---|
| 3123 | return false; |
---|
| 3124 | } |
---|
| 3125 | Evaluation cmp = (Evaluation) obj; |
---|
| 3126 | if (m_ClassIsNominal != cmp.m_ClassIsNominal) return false; |
---|
| 3127 | if (m_NumClasses != cmp.m_NumClasses) return false; |
---|
| 3128 | |
---|
| 3129 | if (m_Incorrect != cmp.m_Incorrect) return false; |
---|
| 3130 | if (m_Correct != cmp.m_Correct) return false; |
---|
| 3131 | if (m_Unclassified != cmp.m_Unclassified) return false; |
---|
| 3132 | if (m_MissingClass != cmp.m_MissingClass) return false; |
---|
| 3133 | if (m_WithClass != cmp.m_WithClass) return false; |
---|
| 3134 | |
---|
| 3135 | if (m_SumErr != cmp.m_SumErr) return false; |
---|
| 3136 | if (m_SumAbsErr != cmp.m_SumAbsErr) return false; |
---|
| 3137 | if (m_SumSqrErr != cmp.m_SumSqrErr) return false; |
---|
| 3138 | if (m_SumClass != cmp.m_SumClass) return false; |
---|
| 3139 | if (m_SumSqrClass != cmp.m_SumSqrClass) return false; |
---|
| 3140 | if (m_SumPredicted != cmp.m_SumPredicted) return false; |
---|
| 3141 | if (m_SumSqrPredicted != cmp.m_SumSqrPredicted) return false; |
---|
| 3142 | if (m_SumClassPredicted != cmp.m_SumClassPredicted) return false; |
---|
| 3143 | |
---|
| 3144 | if (m_ClassIsNominal) { |
---|
| 3145 | for (int i = 0; i < m_NumClasses; i++) { |
---|
| 3146 | for (int j = 0; j < m_NumClasses; j++) { |
---|
| 3147 | if (m_ConfusionMatrix[i][j] != cmp.m_ConfusionMatrix[i][j]) { |
---|
| 3148 | return false; |
---|
| 3149 | } |
---|
| 3150 | } |
---|
| 3151 | } |
---|
| 3152 | } |
---|
| 3153 | |
---|
| 3154 | return true; |
---|
| 3155 | } |
---|
| 3156 | |
---|
| 3157 | /** |
---|
| 3158 | * Make up the help string giving all the command line options. |
---|
| 3159 | * |
---|
| 3160 | * @param classifier the classifier to include options for |
---|
| 3161 | * @param globalInfo include the global information string |
---|
| 3162 | * for the classifier (if available). |
---|
| 3163 | * @return a string detailing the valid command line options |
---|
| 3164 | */ |
---|
| 3165 | protected static String makeOptionString(Classifier classifier, |
---|
| 3166 | boolean globalInfo) { |
---|
| 3167 | |
---|
| 3168 | StringBuffer optionsText = new StringBuffer(""); |
---|
| 3169 | |
---|
| 3170 | // General options |
---|
| 3171 | optionsText.append("\n\nGeneral options:\n\n"); |
---|
| 3172 | optionsText.append("-h or -help\n"); |
---|
| 3173 | optionsText.append("\tOutput help information.\n"); |
---|
| 3174 | optionsText.append("-synopsis or -info\n"); |
---|
| 3175 | optionsText.append("\tOutput synopsis for classifier (use in conjunction " |
---|
| 3176 | + " with -h)\n"); |
---|
| 3177 | optionsText.append("-t <name of training file>\n"); |
---|
| 3178 | optionsText.append("\tSets training file.\n"); |
---|
| 3179 | optionsText.append("-T <name of test file>\n"); |
---|
| 3180 | optionsText.append("\tSets test file. If missing, a cross-validation will be performed\n"); |
---|
| 3181 | optionsText.append("\ton the training data.\n"); |
---|
| 3182 | optionsText.append("-c <class index>\n"); |
---|
| 3183 | optionsText.append("\tSets index of class attribute (default: last).\n"); |
---|
| 3184 | optionsText.append("-x <number of folds>\n"); |
---|
| 3185 | optionsText.append("\tSets number of folds for cross-validation (default: 10).\n"); |
---|
| 3186 | optionsText.append("-no-cv\n"); |
---|
| 3187 | optionsText.append("\tDo not perform any cross validation.\n"); |
---|
| 3188 | optionsText.append("-split-percentage <percentage>\n"); |
---|
| 3189 | optionsText.append("\tSets the percentage for the train/test set split, e.g., 66.\n"); |
---|
| 3190 | optionsText.append("-preserve-order\n"); |
---|
| 3191 | optionsText.append("\tPreserves the order in the percentage split.\n"); |
---|
| 3192 | optionsText.append("-s <random number seed>\n"); |
---|
| 3193 | optionsText.append("\tSets random number seed for cross-validation or percentage split\n"); |
---|
| 3194 | optionsText.append("\t(default: 1).\n"); |
---|
| 3195 | optionsText.append("-m <name of file with cost matrix>\n"); |
---|
| 3196 | optionsText.append("\tSets file with cost matrix.\n"); |
---|
| 3197 | optionsText.append("-l <name of input file>\n"); |
---|
| 3198 | optionsText.append("\tSets model input file. In case the filename ends with '.xml',\n"); |
---|
| 3199 | optionsText.append("\ta PMML file is loaded or, if that fails, options are loaded\n"); |
---|
| 3200 | optionsText.append("\tfrom the XML file.\n"); |
---|
| 3201 | optionsText.append("-d <name of output file>\n"); |
---|
| 3202 | optionsText.append("\tSets model output file. In case the filename ends with '.xml',\n"); |
---|
| 3203 | optionsText.append("\tonly the options are saved to the XML file, not the model.\n"); |
---|
| 3204 | optionsText.append("-v\n"); |
---|
| 3205 | optionsText.append("\tOutputs no statistics for training data.\n"); |
---|
| 3206 | optionsText.append("-o\n"); |
---|
| 3207 | optionsText.append("\tOutputs statistics only, not the classifier.\n"); |
---|
| 3208 | optionsText.append("-i\n"); |
---|
| 3209 | optionsText.append("\tOutputs detailed information-retrieval"); |
---|
| 3210 | optionsText.append(" statistics for each class.\n"); |
---|
| 3211 | optionsText.append("-k\n"); |
---|
| 3212 | optionsText.append("\tOutputs information-theoretic statistics.\n"); |
---|
| 3213 | optionsText.append("-classifications \"weka.classifiers.evaluation.output.prediction.AbstractOutput + options\"\n"); |
---|
| 3214 | optionsText.append("\tUses the specified class for generating the classification output.\n"); |
---|
| 3215 | optionsText.append("\tE.g.: " + PlainText.class.getName() + "\n"); |
---|
| 3216 | optionsText.append("-p range\n"); |
---|
| 3217 | optionsText.append("\tOutputs predictions for test instances (or the train instances if\n"); |
---|
| 3218 | optionsText.append("\tno test instances provided and -no-cv is used), along with the \n"); |
---|
| 3219 | optionsText.append("\tattributes in the specified range (and nothing else). \n"); |
---|
| 3220 | optionsText.append("\tUse '-p 0' if no attributes are desired.\n"); |
---|
| 3221 | optionsText.append("\tDeprecated: use \"-classifications ...\" instead.\n"); |
---|
| 3222 | optionsText.append("-distribution\n"); |
---|
| 3223 | optionsText.append("\tOutputs the distribution instead of only the prediction\n"); |
---|
| 3224 | optionsText.append("\tin conjunction with the '-p' option (only nominal classes).\n"); |
---|
| 3225 | optionsText.append("\tDeprecated: use \"-classifications ...\" instead.\n"); |
---|
| 3226 | optionsText.append("-r\n"); |
---|
| 3227 | optionsText.append("\tOnly outputs cumulative margin distribution.\n"); |
---|
| 3228 | if (classifier instanceof Sourcable) { |
---|
| 3229 | optionsText.append("-z <class name>\n"); |
---|
| 3230 | optionsText.append("\tOnly outputs the source representation" |
---|
| 3231 | + " of the classifier,\n\tgiving it the supplied" |
---|
| 3232 | + " name.\n"); |
---|
| 3233 | } |
---|
| 3234 | if (classifier instanceof Drawable) { |
---|
| 3235 | optionsText.append("-g\n"); |
---|
| 3236 | optionsText.append("\tOnly outputs the graph representation" |
---|
| 3237 | + " of the classifier.\n"); |
---|
| 3238 | } |
---|
| 3239 | optionsText.append("-xml filename | xml-string\n"); |
---|
| 3240 | optionsText.append("\tRetrieves the options from the XML-data instead of the " |
---|
| 3241 | + "command line.\n"); |
---|
| 3242 | optionsText.append("-threshold-file <file>\n"); |
---|
| 3243 | optionsText.append("\tThe file to save the threshold data to.\n" |
---|
| 3244 | + "\tThe format is determined by the extensions, e.g., '.arff' for ARFF \n" |
---|
| 3245 | + "\tformat or '.csv' for CSV.\n"); |
---|
| 3246 | optionsText.append("-threshold-label <label>\n"); |
---|
| 3247 | optionsText.append("\tThe class label to determine the threshold data for\n" |
---|
| 3248 | + "\t(default is the first label)\n"); |
---|
| 3249 | |
---|
| 3250 | // Get scheme-specific options |
---|
| 3251 | if (classifier instanceof OptionHandler) { |
---|
| 3252 | optionsText.append("\nOptions specific to " |
---|
| 3253 | + classifier.getClass().getName() |
---|
| 3254 | + ":\n\n"); |
---|
| 3255 | Enumeration enu = ((OptionHandler)classifier).listOptions(); |
---|
| 3256 | while (enu.hasMoreElements()) { |
---|
| 3257 | Option option = (Option) enu.nextElement(); |
---|
| 3258 | optionsText.append(option.synopsis() + '\n'); |
---|
| 3259 | optionsText.append(option.description() + "\n"); |
---|
| 3260 | } |
---|
| 3261 | } |
---|
| 3262 | |
---|
| 3263 | // Get global information (if available) |
---|
| 3264 | if (globalInfo) { |
---|
| 3265 | try { |
---|
| 3266 | String gi = getGlobalInfo(classifier); |
---|
| 3267 | optionsText.append(gi); |
---|
| 3268 | } catch (Exception ex) { |
---|
| 3269 | // quietly ignore |
---|
| 3270 | } |
---|
| 3271 | } |
---|
| 3272 | return optionsText.toString(); |
---|
| 3273 | } |
---|
| 3274 | |
---|
| 3275 | /** |
---|
| 3276 | * Return the global info (if it exists) for the supplied classifier. |
---|
| 3277 | * |
---|
| 3278 | * @param classifier the classifier to get the global info for |
---|
| 3279 | * @return the global info (synopsis) for the classifier |
---|
| 3280 | * @throws Exception if there is a problem reflecting on the classifier |
---|
| 3281 | */ |
---|
| 3282 | protected static String getGlobalInfo(Classifier classifier) throws Exception { |
---|
| 3283 | BeanInfo bi = Introspector.getBeanInfo(classifier.getClass()); |
---|
| 3284 | MethodDescriptor[] methods; |
---|
| 3285 | methods = bi.getMethodDescriptors(); |
---|
| 3286 | Object[] args = {}; |
---|
| 3287 | String result = "\nSynopsis for " + classifier.getClass().getName() |
---|
| 3288 | + ":\n\n"; |
---|
| 3289 | |
---|
| 3290 | for (int i = 0; i < methods.length; i++) { |
---|
| 3291 | String name = methods[i].getDisplayName(); |
---|
| 3292 | Method meth = methods[i].getMethod(); |
---|
| 3293 | if (name.equals("globalInfo")) { |
---|
| 3294 | String globalInfo = (String)(meth.invoke(classifier, args)); |
---|
| 3295 | result += globalInfo; |
---|
| 3296 | break; |
---|
| 3297 | } |
---|
| 3298 | } |
---|
| 3299 | |
---|
| 3300 | return result; |
---|
| 3301 | } |
---|
| 3302 | |
---|
| 3303 | /** |
---|
| 3304 | * Method for generating indices for the confusion matrix. |
---|
| 3305 | * |
---|
| 3306 | * @param num integer to format |
---|
| 3307 | * @param IDChars the characters to use |
---|
| 3308 | * @param IDWidth the width of the entry |
---|
| 3309 | * @return the formatted integer as a string |
---|
| 3310 | */ |
---|
| 3311 | protected String num2ShortID(int num, char[] IDChars, int IDWidth) { |
---|
| 3312 | |
---|
| 3313 | char ID [] = new char [IDWidth]; |
---|
| 3314 | int i; |
---|
| 3315 | |
---|
| 3316 | for(i = IDWidth - 1; i >=0; i--) { |
---|
| 3317 | ID[i] = IDChars[num % IDChars.length]; |
---|
| 3318 | num = num / IDChars.length - 1; |
---|
| 3319 | if (num < 0) { |
---|
| 3320 | break; |
---|
| 3321 | } |
---|
| 3322 | } |
---|
| 3323 | for(i--; i >= 0; i--) { |
---|
| 3324 | ID[i] = ' '; |
---|
| 3325 | } |
---|
| 3326 | |
---|
| 3327 | return new String(ID); |
---|
| 3328 | } |
---|
| 3329 | |
---|
| 3330 | /** |
---|
| 3331 | * Convert a single prediction into a probability distribution |
---|
| 3332 | * with all zero probabilities except the predicted value which |
---|
| 3333 | * has probability 1.0. |
---|
| 3334 | * |
---|
| 3335 | * @param predictedClass the index of the predicted class |
---|
| 3336 | * @return the probability distribution |
---|
| 3337 | */ |
---|
| 3338 | protected double [] makeDistribution(double predictedClass) { |
---|
| 3339 | |
---|
| 3340 | double [] result = new double [m_NumClasses]; |
---|
| 3341 | if (Utils.isMissingValue(predictedClass)) { |
---|
| 3342 | return result; |
---|
| 3343 | } |
---|
| 3344 | if (m_ClassIsNominal) { |
---|
| 3345 | result[(int)predictedClass] = 1.0; |
---|
| 3346 | } else { |
---|
| 3347 | result[0] = predictedClass; |
---|
| 3348 | } |
---|
| 3349 | return result; |
---|
| 3350 | } |
---|
| 3351 | |
---|
| 3352 | /** |
---|
| 3353 | * Updates all the statistics about a classifiers performance for |
---|
| 3354 | * the current test instance. |
---|
| 3355 | * |
---|
| 3356 | * @param predictedDistribution the probabilities assigned to |
---|
| 3357 | * each class |
---|
| 3358 | * @param instance the instance to be classified |
---|
| 3359 | * @throws Exception if the class of the instance is not |
---|
| 3360 | * set |
---|
| 3361 | */ |
---|
| 3362 | protected void updateStatsForClassifier(double [] predictedDistribution, |
---|
| 3363 | Instance instance) |
---|
| 3364 | throws Exception { |
---|
| 3365 | |
---|
| 3366 | int actualClass = (int)instance.classValue(); |
---|
| 3367 | |
---|
| 3368 | if (!instance.classIsMissing()) { |
---|
| 3369 | updateMargins(predictedDistribution, actualClass, instance.weight()); |
---|
| 3370 | |
---|
| 3371 | // Determine the predicted class (doesn't detect multiple |
---|
| 3372 | // classifications) |
---|
| 3373 | int predictedClass = -1; |
---|
| 3374 | double bestProb = 0.0; |
---|
| 3375 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 3376 | if (predictedDistribution[i] > bestProb) { |
---|
| 3377 | predictedClass = i; |
---|
| 3378 | bestProb = predictedDistribution[i]; |
---|
| 3379 | } |
---|
| 3380 | } |
---|
| 3381 | |
---|
| 3382 | m_WithClass += instance.weight(); |
---|
| 3383 | |
---|
| 3384 | // Determine misclassification cost |
---|
| 3385 | if (m_CostMatrix != null) { |
---|
| 3386 | if (predictedClass < 0) { |
---|
| 3387 | // For missing predictions, we assume the worst possible cost. |
---|
| 3388 | // This is pretty harsh. |
---|
| 3389 | // Perhaps we could take the negative of the cost of a correct |
---|
| 3390 | // prediction (-m_CostMatrix.getElement(actualClass,actualClass)), |
---|
| 3391 | // although often this will be zero |
---|
| 3392 | m_TotalCost += instance.weight() * m_CostMatrix.getMaxCost(actualClass, instance); |
---|
| 3393 | } else { |
---|
| 3394 | m_TotalCost += instance.weight() * m_CostMatrix.getElement(actualClass, predictedClass, |
---|
| 3395 | instance); |
---|
| 3396 | } |
---|
| 3397 | } |
---|
| 3398 | |
---|
| 3399 | // Update counts when no class was predicted |
---|
| 3400 | if (predictedClass < 0) { |
---|
| 3401 | m_Unclassified += instance.weight(); |
---|
| 3402 | return; |
---|
| 3403 | } |
---|
| 3404 | |
---|
| 3405 | double predictedProb = Math.max(MIN_SF_PROB, predictedDistribution[actualClass]); |
---|
| 3406 | double priorProb = Math.max(MIN_SF_PROB, m_ClassPriors[actualClass] / m_ClassPriorsSum); |
---|
| 3407 | if (predictedProb >= priorProb) { |
---|
| 3408 | m_SumKBInfo += (Utils.log2(predictedProb) - Utils.log2(priorProb)) * instance.weight(); |
---|
| 3409 | } else { |
---|
| 3410 | m_SumKBInfo -= (Utils.log2(1.0-predictedProb) - Utils.log2(1.0-priorProb)) |
---|
| 3411 | * instance.weight(); |
---|
| 3412 | } |
---|
| 3413 | |
---|
| 3414 | m_SumSchemeEntropy -= Utils.log2(predictedProb) * instance.weight(); |
---|
| 3415 | m_SumPriorEntropy -= Utils.log2(priorProb) * instance.weight(); |
---|
| 3416 | |
---|
| 3417 | updateNumericScores(predictedDistribution, |
---|
| 3418 | makeDistribution(instance.classValue()), |
---|
| 3419 | instance.weight()); |
---|
| 3420 | |
---|
| 3421 | // Update coverage stats |
---|
| 3422 | int[] indices = Utils.sort(predictedDistribution); |
---|
| 3423 | double sum = 0, sizeOfRegions = 0; |
---|
| 3424 | for (int i = predictedDistribution.length - 1; i >= 0; i--) { |
---|
| 3425 | if (sum >= m_ConfLevel) { |
---|
| 3426 | break; |
---|
| 3427 | } |
---|
| 3428 | sum += predictedDistribution[indices[i]]; |
---|
| 3429 | sizeOfRegions++; |
---|
| 3430 | if (actualClass == indices[i]) { |
---|
| 3431 | m_TotalCoverage += instance.weight(); |
---|
| 3432 | } |
---|
| 3433 | } |
---|
| 3434 | m_TotalSizeOfRegions += sizeOfRegions / (m_MaxTarget - m_MinTarget); |
---|
| 3435 | |
---|
| 3436 | // Update other stats |
---|
| 3437 | m_ConfusionMatrix[actualClass][predictedClass] += instance.weight(); |
---|
| 3438 | if (predictedClass != actualClass) { |
---|
| 3439 | m_Incorrect += instance.weight(); |
---|
| 3440 | } else { |
---|
| 3441 | m_Correct += instance.weight(); |
---|
| 3442 | } |
---|
| 3443 | } else { |
---|
| 3444 | m_MissingClass += instance.weight(); |
---|
| 3445 | } |
---|
| 3446 | } |
---|
| 3447 | |
---|
| 3448 | /** |
---|
| 3449 | * Updates stats for interval estimator based on current test instance. |
---|
| 3450 | * |
---|
| 3451 | * @param classifier the interval estimator |
---|
| 3452 | * @param classMissing the instance for which the intervals are computed, without a class value |
---|
| 3453 | * @param classValue the class value of this instance |
---|
| 3454 | * @throws Exception if intervals could not be computed successfully |
---|
| 3455 | */ |
---|
| 3456 | protected void updateStatsForIntervalEstimator(IntervalEstimator classifier, Instance classMissing, |
---|
| 3457 | double classValue) throws Exception { |
---|
| 3458 | |
---|
| 3459 | double[][] preds = classifier.predictIntervals(classMissing, m_ConfLevel); |
---|
| 3460 | if (m_Predictions != null) |
---|
| 3461 | ((NumericPrediction) m_Predictions.lastElement()).setPredictionIntervals(preds); |
---|
| 3462 | for (int i = 0; i < preds.length; i++) { |
---|
| 3463 | m_TotalSizeOfRegions += (preds[i][1] - preds[i][0]) / (m_MaxTarget - m_MinTarget); |
---|
| 3464 | } |
---|
| 3465 | for (int i = 0; i < preds.length; i++) { |
---|
| 3466 | if ((preds[i][1] >= classValue) && (preds[i][0] <= classValue)) { |
---|
| 3467 | m_TotalCoverage += classMissing.weight(); |
---|
| 3468 | break; |
---|
| 3469 | } |
---|
| 3470 | } |
---|
| 3471 | } |
---|
| 3472 | |
---|
| 3473 | /** |
---|
| 3474 | * Updates stats for conditional density estimator based on current test instance. |
---|
| 3475 | * |
---|
| 3476 | * @param classifier the conditional density estimator |
---|
| 3477 | * @param classMissing the instance for which density is to be computed, without a class value |
---|
| 3478 | * @param classValue the class value of this instance |
---|
| 3479 | * @throws Exception if density could not be computed successfully |
---|
| 3480 | */ |
---|
| 3481 | protected void updateStatsForConditionalDensityEstimator(ConditionalDensityEstimator classifier, |
---|
| 3482 | Instance classMissing, |
---|
| 3483 | double classValue) throws Exception { |
---|
| 3484 | |
---|
| 3485 | if (m_PriorEstimator == null) { |
---|
| 3486 | setNumericPriorsFromBuffer(); |
---|
| 3487 | } |
---|
| 3488 | m_SumSchemeEntropy -= classifier.logDensity(classMissing, classValue) * classMissing.weight() / |
---|
| 3489 | Utils.log2; |
---|
| 3490 | m_SumPriorEntropy -= m_PriorEstimator.logDensity(classValue) * classMissing.weight() / |
---|
| 3491 | Utils.log2; |
---|
| 3492 | } |
---|
| 3493 | |
---|
| 3494 | /** |
---|
| 3495 | * Updates all the statistics about a predictors performance for |
---|
| 3496 | * the current test instance. |
---|
| 3497 | * |
---|
| 3498 | * @param predictedValue the numeric value the classifier predicts |
---|
| 3499 | * @param instance the instance to be classified |
---|
| 3500 | * @throws Exception if the class of the instance is not set |
---|
| 3501 | */ |
---|
| 3502 | protected void updateStatsForPredictor(double predictedValue, Instance instance) |
---|
| 3503 | throws Exception { |
---|
| 3504 | |
---|
| 3505 | if (!instance.classIsMissing()){ |
---|
| 3506 | |
---|
| 3507 | // Update stats |
---|
| 3508 | m_WithClass += instance.weight(); |
---|
| 3509 | if (Utils.isMissingValue(predictedValue)) { |
---|
| 3510 | m_Unclassified += instance.weight(); |
---|
| 3511 | return; |
---|
| 3512 | } |
---|
| 3513 | m_SumClass += instance.weight() * instance.classValue(); |
---|
| 3514 | m_SumSqrClass += instance.weight() * instance.classValue() * instance.classValue(); |
---|
| 3515 | m_SumClassPredicted += instance.weight() * instance.classValue() * predictedValue; |
---|
| 3516 | m_SumPredicted += instance.weight() * predictedValue; |
---|
| 3517 | m_SumSqrPredicted += instance.weight() * predictedValue * predictedValue; |
---|
| 3518 | |
---|
| 3519 | updateNumericScores(makeDistribution(predictedValue), |
---|
| 3520 | makeDistribution(instance.classValue()), |
---|
| 3521 | instance.weight()); |
---|
| 3522 | |
---|
| 3523 | } else |
---|
| 3524 | m_MissingClass += instance.weight(); |
---|
| 3525 | } |
---|
| 3526 | |
---|
| 3527 | /** |
---|
| 3528 | * Update the cumulative record of classification margins. |
---|
| 3529 | * |
---|
| 3530 | * @param predictedDistribution the probability distribution predicted for |
---|
| 3531 | * the current instance |
---|
| 3532 | * @param actualClass the index of the actual instance class |
---|
| 3533 | * @param weight the weight assigned to the instance |
---|
| 3534 | */ |
---|
| 3535 | protected void updateMargins(double [] predictedDistribution, |
---|
| 3536 | int actualClass, double weight) { |
---|
| 3537 | |
---|
| 3538 | double probActual = predictedDistribution[actualClass]; |
---|
| 3539 | double probNext = 0; |
---|
| 3540 | |
---|
| 3541 | for(int i = 0; i < m_NumClasses; i++) |
---|
| 3542 | if ((i != actualClass) && |
---|
| 3543 | (predictedDistribution[i] > probNext)) |
---|
| 3544 | probNext = predictedDistribution[i]; |
---|
| 3545 | |
---|
| 3546 | double margin = probActual - probNext; |
---|
| 3547 | int bin = (int)((margin + 1.0) / 2.0 * k_MarginResolution); |
---|
| 3548 | m_MarginCounts[bin] += weight; |
---|
| 3549 | } |
---|
| 3550 | |
---|
| 3551 | /** |
---|
| 3552 | * Update the numeric accuracy measures. For numeric classes, the |
---|
| 3553 | * accuracy is between the actual and predicted class values. For |
---|
| 3554 | * nominal classes, the accuracy is between the actual and |
---|
| 3555 | * predicted class probabilities. |
---|
| 3556 | * |
---|
| 3557 | * @param predicted the predicted values |
---|
| 3558 | * @param actual the actual value |
---|
| 3559 | * @param weight the weight associated with this prediction |
---|
| 3560 | */ |
---|
| 3561 | protected void updateNumericScores(double [] predicted, |
---|
| 3562 | double [] actual, double weight) { |
---|
| 3563 | |
---|
| 3564 | double diff; |
---|
| 3565 | double sumErr = 0, sumAbsErr = 0, sumSqrErr = 0; |
---|
| 3566 | double sumPriorAbsErr = 0, sumPriorSqrErr = 0; |
---|
| 3567 | for(int i = 0; i < m_NumClasses; i++) { |
---|
| 3568 | diff = predicted[i] - actual[i]; |
---|
| 3569 | sumErr += diff; |
---|
| 3570 | sumAbsErr += Math.abs(diff); |
---|
| 3571 | sumSqrErr += diff * diff; |
---|
| 3572 | diff = (m_ClassPriors[i] / m_ClassPriorsSum) - actual[i]; |
---|
| 3573 | sumPriorAbsErr += Math.abs(diff); |
---|
| 3574 | sumPriorSqrErr += diff * diff; |
---|
| 3575 | } |
---|
| 3576 | m_SumErr += weight * sumErr / m_NumClasses; |
---|
| 3577 | m_SumAbsErr += weight * sumAbsErr / m_NumClasses; |
---|
| 3578 | m_SumSqrErr += weight * sumSqrErr / m_NumClasses; |
---|
| 3579 | m_SumPriorAbsErr += weight * sumPriorAbsErr / m_NumClasses; |
---|
| 3580 | m_SumPriorSqrErr += weight * sumPriorSqrErr / m_NumClasses; |
---|
| 3581 | } |
---|
| 3582 | |
---|
| 3583 | /** |
---|
| 3584 | * Adds a numeric (non-missing) training class value and weight to |
---|
| 3585 | * the buffer of stored values. Also updates minimum and maximum target value. |
---|
| 3586 | * |
---|
| 3587 | * @param classValue the class value |
---|
| 3588 | * @param weight the instance weight |
---|
| 3589 | */ |
---|
| 3590 | protected void addNumericTrainClass(double classValue, double weight) { |
---|
| 3591 | |
---|
| 3592 | // Update minimum and maximum target value |
---|
| 3593 | if (classValue > m_MaxTarget) { |
---|
| 3594 | m_MaxTarget = classValue; |
---|
| 3595 | } |
---|
| 3596 | if (classValue < m_MinTarget) { |
---|
| 3597 | m_MinTarget = classValue; |
---|
| 3598 | } |
---|
| 3599 | |
---|
| 3600 | // Update buffer |
---|
| 3601 | if (m_TrainClassVals == null) { |
---|
| 3602 | m_TrainClassVals = new double [100]; |
---|
| 3603 | m_TrainClassWeights = new double [100]; |
---|
| 3604 | } |
---|
| 3605 | if (m_NumTrainClassVals == m_TrainClassVals.length) { |
---|
| 3606 | double [] temp = new double [m_TrainClassVals.length * 2]; |
---|
| 3607 | System.arraycopy(m_TrainClassVals, 0, |
---|
| 3608 | temp, 0, m_TrainClassVals.length); |
---|
| 3609 | m_TrainClassVals = temp; |
---|
| 3610 | |
---|
| 3611 | temp = new double [m_TrainClassWeights.length * 2]; |
---|
| 3612 | System.arraycopy(m_TrainClassWeights, 0, |
---|
| 3613 | temp, 0, m_TrainClassWeights.length); |
---|
| 3614 | m_TrainClassWeights = temp; |
---|
| 3615 | } |
---|
| 3616 | m_TrainClassVals[m_NumTrainClassVals] = classValue; |
---|
| 3617 | m_TrainClassWeights[m_NumTrainClassVals] = weight; |
---|
| 3618 | m_NumTrainClassVals++; |
---|
| 3619 | } |
---|
| 3620 | |
---|
| 3621 | /** |
---|
| 3622 | * Sets up the priors for numeric class attributes from the |
---|
| 3623 | * training class values that have been seen so far. |
---|
| 3624 | */ |
---|
| 3625 | protected void setNumericPriorsFromBuffer() { |
---|
| 3626 | |
---|
| 3627 | m_PriorEstimator = new UnivariateKernelEstimator(); |
---|
| 3628 | for (int i = 0; i < m_NumTrainClassVals; i++) { |
---|
| 3629 | m_PriorEstimator.addValue(m_TrainClassVals[i], m_TrainClassWeights[i]); |
---|
| 3630 | } |
---|
| 3631 | } |
---|
| 3632 | |
---|
| 3633 | /** |
---|
| 3634 | * Returns the revision string. |
---|
| 3635 | * |
---|
| 3636 | * @return the revision |
---|
| 3637 | */ |
---|
| 3638 | public String getRevision() { |
---|
| 3639 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
| 3640 | } |
---|
| 3641 | } |
---|