[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * CheckClassifier.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.CheckScheme; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SerializationHelper; |
---|
| 35 | import weka.core.TestInstances; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.WeightedInstancesHandler; |
---|
| 38 | |
---|
| 39 | import java.util.Enumeration; |
---|
| 40 | import java.util.Random; |
---|
| 41 | import java.util.Vector; |
---|
| 42 | |
---|
| 43 | /** |
---|
| 44 | * Class for examining the capabilities and finding problems with |
---|
| 45 | * classifiers. If you implement a classifier using the WEKA.libraries, |
---|
| 46 | * you should run the checks on it to ensure robustness and correct |
---|
| 47 | * operation. Passing all the tests of this object does not mean |
---|
| 48 | * bugs in the classifier don't exist, but this will help find some |
---|
| 49 | * common ones. <p/> |
---|
| 50 | * |
---|
| 51 | * Typical usage: <p/> |
---|
| 52 | * <code>java weka.classifiers.CheckClassifier -W classifier_name |
---|
| 53 | * classifier_options </code><p/> |
---|
| 54 | * |
---|
| 55 | * CheckClassifier reports on the following: |
---|
| 56 | * <ul> |
---|
| 57 | * <li> Classifier abilities |
---|
| 58 | * <ul> |
---|
| 59 | * <li> Possible command line options to the classifier </li> |
---|
| 60 | * <li> Whether the classifier can predict nominal, numeric, string, |
---|
| 61 | * date or relational class attributes. Warnings will be displayed if |
---|
| 62 | * performance is worse than ZeroR </li> |
---|
| 63 | * <li> Whether the classifier can be trained incrementally </li> |
---|
| 64 | * <li> Whether the classifier can handle numeric predictor attributes </li> |
---|
| 65 | * <li> Whether the classifier can handle nominal predictor attributes </li> |
---|
| 66 | * <li> Whether the classifier can handle string predictor attributes </li> |
---|
| 67 | * <li> Whether the classifier can handle date predictor attributes </li> |
---|
| 68 | * <li> Whether the classifier can handle relational predictor attributes </li> |
---|
| 69 | * <li> Whether the classifier can handle multi-instance data </li> |
---|
| 70 | * <li> Whether the classifier can handle missing predictor values </li> |
---|
| 71 | * <li> Whether the classifier can handle missing class values </li> |
---|
| 72 | * <li> Whether a nominal classifier only handles 2 class problems </li> |
---|
| 73 | * <li> Whether the classifier can handle instance weights </li> |
---|
| 74 | * </ul> |
---|
| 75 | * </li> |
---|
| 76 | * <li> Correct functioning |
---|
| 77 | * <ul> |
---|
| 78 | * <li> Correct initialisation during buildClassifier (i.e. no result |
---|
| 79 | * changes when buildClassifier called repeatedly) </li> |
---|
| 80 | * <li> Whether incremental training produces the same results |
---|
| 81 | * as during non-incremental training (which may or may not |
---|
| 82 | * be OK) </li> |
---|
| 83 | * <li> Whether the classifier alters the data pased to it |
---|
| 84 | * (number of instances, instance order, instance weights, etc) </li> |
---|
| 85 | * <li> Whether the toString() method works correctly before the |
---|
| 86 | * classifier has been built. </li> |
---|
| 87 | * </ul> |
---|
| 88 | * </li> |
---|
| 89 | * <li> Degenerate cases |
---|
| 90 | * <ul> |
---|
| 91 | * <li> building classifier with zero training instances </li> |
---|
| 92 | * <li> all but one predictor attribute values missing </li> |
---|
| 93 | * <li> all predictor attribute values missing </li> |
---|
| 94 | * <li> all but one class values missing </li> |
---|
| 95 | * <li> all class values missing </li> |
---|
| 96 | * </ul> |
---|
| 97 | * </li> |
---|
| 98 | * </ul> |
---|
| 99 | * Running CheckClassifier with the debug option set will output the |
---|
| 100 | * training and test datasets for any failed tests.<p/> |
---|
| 101 | * |
---|
| 102 | * The <code>weka.classifiers.AbstractClassifierTest</code> uses this |
---|
| 103 | * class to test all the classifiers. Any changes here, have to be |
---|
| 104 | * checked in that abstract test class, too. <p/> |
---|
| 105 | * |
---|
| 106 | <!-- options-start --> |
---|
| 107 | * Valid options are: <p/> |
---|
| 108 | * |
---|
| 109 | * <pre> -D |
---|
| 110 | * Turn on debugging output.</pre> |
---|
| 111 | * |
---|
| 112 | * <pre> -S |
---|
| 113 | * Silent mode - prints nothing to stdout.</pre> |
---|
| 114 | * |
---|
| 115 | * <pre> -N <num> |
---|
| 116 | * The number of instances in the datasets (default 20).</pre> |
---|
| 117 | * |
---|
| 118 | * <pre> -nominal <num> |
---|
| 119 | * The number of nominal attributes (default 2).</pre> |
---|
| 120 | * |
---|
| 121 | * <pre> -nominal-values <num> |
---|
| 122 | * The number of values for nominal attributes (default 1).</pre> |
---|
| 123 | * |
---|
| 124 | * <pre> -numeric <num> |
---|
| 125 | * The number of numeric attributes (default 1).</pre> |
---|
| 126 | * |
---|
| 127 | * <pre> -string <num> |
---|
| 128 | * The number of string attributes (default 1).</pre> |
---|
| 129 | * |
---|
| 130 | * <pre> -date <num> |
---|
| 131 | * The number of date attributes (default 1).</pre> |
---|
| 132 | * |
---|
| 133 | * <pre> -relational <num> |
---|
| 134 | * The number of relational attributes (default 1).</pre> |
---|
| 135 | * |
---|
| 136 | * <pre> -num-instances-relational <num> |
---|
| 137 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
| 138 | * |
---|
| 139 | * <pre> -words <comma-separated-list> |
---|
| 140 | * The words to use in string attributes.</pre> |
---|
| 141 | * |
---|
| 142 | * <pre> -word-separators <chars> |
---|
| 143 | * The word separators to use in string attributes.</pre> |
---|
| 144 | * |
---|
| 145 | * <pre> -W |
---|
| 146 | * Full name of the classifier analysed. |
---|
| 147 | * eg: weka.classifiers.bayes.NaiveBayes |
---|
| 148 | * (default weka.classifiers.rules.ZeroR)</pre> |
---|
| 149 | * |
---|
| 150 | * <pre> |
---|
| 151 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 152 | * </pre> |
---|
| 153 | * |
---|
| 154 | * <pre> -D |
---|
| 155 | * If set, classifier is run in debug mode and |
---|
| 156 | * may output additional info to the console</pre> |
---|
| 157 | * |
---|
| 158 | <!-- options-end --> |
---|
| 159 | * |
---|
| 160 | * Options after -- are passed to the designated classifier.<p/> |
---|
| 161 | * |
---|
| 162 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 163 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
| 164 | * @version $Revision: 6041 $ |
---|
| 165 | * @see TestInstances |
---|
| 166 | */ |
---|
| 167 | public class CheckClassifier |
---|
| 168 | extends CheckScheme { |
---|
| 169 | |
---|
| 170 | /* |
---|
| 171 | * Note about test methods: |
---|
| 172 | * - methods return array of booleans |
---|
| 173 | * - first index: success or not |
---|
| 174 | * - second index: acceptable or not (e.g., Exception is OK) |
---|
| 175 | * - in case the performance is worse than that of ZeroR both indices are true |
---|
| 176 | * |
---|
| 177 | * FracPete (fracpete at waikato dot ac dot nz) |
---|
| 178 | */ |
---|
| 179 | |
---|
| 180 | /*** The classifier to be examined */ |
---|
| 181 | protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
| 182 | |
---|
| 183 | /** |
---|
| 184 | * Returns an enumeration describing the available options. |
---|
| 185 | * |
---|
| 186 | * @return an enumeration of all the available options. |
---|
| 187 | */ |
---|
| 188 | public Enumeration listOptions() { |
---|
| 189 | Vector result = new Vector(); |
---|
| 190 | |
---|
| 191 | Enumeration en = super.listOptions(); |
---|
| 192 | while (en.hasMoreElements()) |
---|
| 193 | result.addElement(en.nextElement()); |
---|
| 194 | |
---|
| 195 | result.addElement(new Option( |
---|
| 196 | "\tFull name of the classifier analysed.\n" |
---|
| 197 | +"\teg: weka.classifiers.bayes.NaiveBayes\n" |
---|
| 198 | + "\t(default weka.classifiers.rules.ZeroR)", |
---|
| 199 | "W", 1, "-W")); |
---|
| 200 | |
---|
| 201 | if ((m_Classifier != null) |
---|
| 202 | && (m_Classifier instanceof OptionHandler)) { |
---|
| 203 | result.addElement(new Option("", "", 0, |
---|
| 204 | "\nOptions specific to classifier " |
---|
| 205 | + m_Classifier.getClass().getName() |
---|
| 206 | + ":")); |
---|
| 207 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
| 208 | while (enu.hasMoreElements()) |
---|
| 209 | result.addElement(enu.nextElement()); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | return result.elements(); |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | /** |
---|
| 216 | * Parses a given list of options. |
---|
| 217 | * |
---|
| 218 | <!-- options-start --> |
---|
| 219 | * Valid options are: <p/> |
---|
| 220 | * |
---|
| 221 | * <pre> -D |
---|
| 222 | * Turn on debugging output.</pre> |
---|
| 223 | * |
---|
| 224 | * <pre> -S |
---|
| 225 | * Silent mode - prints nothing to stdout.</pre> |
---|
| 226 | * |
---|
| 227 | * <pre> -N <num> |
---|
| 228 | * The number of instances in the datasets (default 20).</pre> |
---|
| 229 | * |
---|
| 230 | * <pre> -nominal <num> |
---|
| 231 | * The number of nominal attributes (default 2).</pre> |
---|
| 232 | * |
---|
| 233 | * <pre> -nominal-values <num> |
---|
| 234 | * The number of values for nominal attributes (default 1).</pre> |
---|
| 235 | * |
---|
| 236 | * <pre> -numeric <num> |
---|
| 237 | * The number of numeric attributes (default 1).</pre> |
---|
| 238 | * |
---|
| 239 | * <pre> -string <num> |
---|
| 240 | * The number of string attributes (default 1).</pre> |
---|
| 241 | * |
---|
| 242 | * <pre> -date <num> |
---|
| 243 | * The number of date attributes (default 1).</pre> |
---|
| 244 | * |
---|
| 245 | * <pre> -relational <num> |
---|
| 246 | * The number of relational attributes (default 1).</pre> |
---|
| 247 | * |
---|
| 248 | * <pre> -num-instances-relational <num> |
---|
| 249 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
| 250 | * |
---|
| 251 | * <pre> -words <comma-separated-list> |
---|
| 252 | * The words to use in string attributes.</pre> |
---|
| 253 | * |
---|
| 254 | * <pre> -word-separators <chars> |
---|
| 255 | * The word separators to use in string attributes.</pre> |
---|
| 256 | * |
---|
| 257 | * <pre> -W |
---|
| 258 | * Full name of the classifier analysed. |
---|
| 259 | * eg: weka.classifiers.bayes.NaiveBayes |
---|
| 260 | * (default weka.classifiers.rules.ZeroR)</pre> |
---|
| 261 | * |
---|
| 262 | * <pre> |
---|
| 263 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 264 | * </pre> |
---|
| 265 | * |
---|
| 266 | * <pre> -D |
---|
| 267 | * If set, classifier is run in debug mode and |
---|
| 268 | * may output additional info to the console</pre> |
---|
| 269 | * |
---|
| 270 | <!-- options-end --> |
---|
| 271 | * |
---|
| 272 | * @param options the list of options as an array of strings |
---|
| 273 | * @throws Exception if an option is not supported |
---|
| 274 | */ |
---|
| 275 | public void setOptions(String[] options) throws Exception { |
---|
| 276 | String tmpStr; |
---|
| 277 | |
---|
| 278 | super.setOptions(options); |
---|
| 279 | |
---|
| 280 | tmpStr = Utils.getOption('W', options); |
---|
| 281 | if (tmpStr.length() == 0) |
---|
| 282 | tmpStr = weka.classifiers.rules.ZeroR.class.getName(); |
---|
| 283 | setClassifier( |
---|
| 284 | (Classifier) forName( |
---|
| 285 | "weka.classifiers", |
---|
| 286 | Classifier.class, |
---|
| 287 | tmpStr, |
---|
| 288 | Utils.partitionOptions(options))); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * Gets the current settings of the CheckClassifier. |
---|
| 293 | * |
---|
| 294 | * @return an array of strings suitable for passing to setOptions |
---|
| 295 | */ |
---|
| 296 | public String[] getOptions() { |
---|
| 297 | Vector result; |
---|
| 298 | String[] options; |
---|
| 299 | int i; |
---|
| 300 | |
---|
| 301 | result = new Vector(); |
---|
| 302 | |
---|
| 303 | options = super.getOptions(); |
---|
| 304 | for (i = 0; i < options.length; i++) |
---|
| 305 | result.add(options[i]); |
---|
| 306 | |
---|
| 307 | if (getClassifier() != null) { |
---|
| 308 | result.add("-W"); |
---|
| 309 | result.add(getClassifier().getClass().getName()); |
---|
| 310 | } |
---|
| 311 | |
---|
| 312 | if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) |
---|
| 313 | options = ((OptionHandler) m_Classifier).getOptions(); |
---|
| 314 | else |
---|
| 315 | options = new String[0]; |
---|
| 316 | |
---|
| 317 | if (options.length > 0) { |
---|
| 318 | result.add("--"); |
---|
| 319 | for (i = 0; i < options.length; i++) |
---|
| 320 | result.add(options[i]); |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | /** |
---|
| 327 | * Begin the tests, reporting results to System.out |
---|
| 328 | */ |
---|
| 329 | public void doTests() { |
---|
| 330 | |
---|
| 331 | if (getClassifier() == null) { |
---|
| 332 | println("\n=== No classifier set ==="); |
---|
| 333 | return; |
---|
| 334 | } |
---|
| 335 | println("\n=== Check on Classifier: " |
---|
| 336 | + getClassifier().getClass().getName() |
---|
| 337 | + " ===\n"); |
---|
| 338 | |
---|
| 339 | // Start tests |
---|
| 340 | m_ClasspathProblems = false; |
---|
| 341 | println("--> Checking for interfaces"); |
---|
| 342 | canTakeOptions(); |
---|
| 343 | boolean updateableClassifier = updateableClassifier()[0]; |
---|
| 344 | boolean weightedInstancesHandler = weightedInstancesHandler()[0]; |
---|
| 345 | boolean multiInstanceHandler = multiInstanceHandler()[0]; |
---|
| 346 | println("--> Classifier tests"); |
---|
| 347 | declaresSerialVersionUID(); |
---|
| 348 | testToString(); |
---|
| 349 | testsPerClassType(Attribute.NOMINAL, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); |
---|
| 350 | testsPerClassType(Attribute.NUMERIC, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); |
---|
| 351 | testsPerClassType(Attribute.DATE, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); |
---|
| 352 | testsPerClassType(Attribute.STRING, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); |
---|
| 353 | testsPerClassType(Attribute.RELATIONAL, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | /** |
---|
| 357 | * Set the classifier for boosting. |
---|
| 358 | * |
---|
| 359 | * @param newClassifier the Classifier to use. |
---|
| 360 | */ |
---|
| 361 | public void setClassifier(Classifier newClassifier) { |
---|
| 362 | m_Classifier = newClassifier; |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | /** |
---|
| 366 | * Get the classifier used as the classifier |
---|
| 367 | * |
---|
| 368 | * @return the classifier used as the classifier |
---|
| 369 | */ |
---|
| 370 | public Classifier getClassifier() { |
---|
| 371 | return m_Classifier; |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | /** |
---|
| 375 | * Run a battery of tests for a given class attribute type |
---|
| 376 | * |
---|
| 377 | * @param classType true if the class attribute should be numeric |
---|
| 378 | * @param updateable true if the classifier is updateable |
---|
| 379 | * @param weighted true if the classifier says it handles weights |
---|
| 380 | * @param multiInstance true if the classifier is a multi-instance classifier |
---|
| 381 | */ |
---|
| 382 | protected void testsPerClassType(int classType, |
---|
| 383 | boolean updateable, |
---|
| 384 | boolean weighted, |
---|
| 385 | boolean multiInstance) { |
---|
| 386 | |
---|
| 387 | boolean PNom = canPredict(true, false, false, false, false, multiInstance, classType)[0]; |
---|
| 388 | boolean PNum = canPredict(false, true, false, false, false, multiInstance, classType)[0]; |
---|
| 389 | boolean PStr = canPredict(false, false, true, false, false, multiInstance, classType)[0]; |
---|
| 390 | boolean PDat = canPredict(false, false, false, true, false, multiInstance, classType)[0]; |
---|
| 391 | boolean PRel; |
---|
| 392 | if (!multiInstance) |
---|
| 393 | PRel = canPredict(false, false, false, false, true, multiInstance, classType)[0]; |
---|
| 394 | else |
---|
| 395 | PRel = false; |
---|
| 396 | |
---|
| 397 | if (PNom || PNum || PStr || PDat || PRel) { |
---|
| 398 | if (weighted) |
---|
| 399 | instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 400 | |
---|
| 401 | canHandleOnlyClass(PNom, PNum, PStr, PDat, PRel, classType); |
---|
| 402 | |
---|
| 403 | if (classType == Attribute.NOMINAL) |
---|
| 404 | canHandleNClasses(PNom, PNum, PStr, PDat, PRel, multiInstance, 4); |
---|
| 405 | |
---|
| 406 | if (!multiInstance) { |
---|
| 407 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 0); |
---|
| 408 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 1); |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 412 | boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
| 413 | multiInstance, classType, |
---|
| 414 | true, false, 20)[0]; |
---|
| 415 | if (handleMissingPredictors) |
---|
| 416 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, true, false, 100); |
---|
| 417 | |
---|
| 418 | boolean handleMissingClass = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
| 419 | multiInstance, classType, |
---|
| 420 | false, true, 20)[0]; |
---|
| 421 | if (handleMissingClass) |
---|
| 422 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, false, true, 100); |
---|
| 423 | |
---|
| 424 | correctBuildInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 425 | datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, |
---|
| 426 | handleMissingPredictors, handleMissingClass); |
---|
| 427 | doesntUseTestClassVal(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 428 | if (updateable) |
---|
| 429 | updatingEquality(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 430 | } |
---|
| 431 | } |
---|
| 432 | |
---|
| 433 | /** |
---|
| 434 | * Checks whether the scheme's toString() method works even though the |
---|
| 435 | * classifies hasn't been built yet. |
---|
| 436 | * |
---|
| 437 | * @return index 0 is true if the toString() method works fine |
---|
| 438 | */ |
---|
| 439 | protected boolean[] testToString() { |
---|
| 440 | boolean[] result = new boolean[2]; |
---|
| 441 | |
---|
| 442 | print("toString..."); |
---|
| 443 | |
---|
| 444 | try { |
---|
| 445 | Classifier copy = (Classifier) m_Classifier.getClass().newInstance(); |
---|
| 446 | copy.toString(); |
---|
| 447 | result[0] = true; |
---|
| 448 | println("yes"); |
---|
| 449 | } |
---|
| 450 | catch (Exception e) { |
---|
| 451 | result[0] = false; |
---|
| 452 | println("no"); |
---|
| 453 | if (m_Debug) { |
---|
| 454 | println("\n=== Full report ==="); |
---|
| 455 | e.printStackTrace(); |
---|
| 456 | println("\n"); |
---|
| 457 | } |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | return result; |
---|
| 461 | } |
---|
| 462 | |
---|
| 463 | /** |
---|
| 464 | * tests for a serialVersionUID. Fails in case the scheme doesn't declare |
---|
| 465 | * a UID. |
---|
| 466 | * |
---|
| 467 | * @return index 0 is true if the scheme declares a UID |
---|
| 468 | */ |
---|
| 469 | protected boolean[] declaresSerialVersionUID() { |
---|
| 470 | boolean[] result = new boolean[2]; |
---|
| 471 | |
---|
| 472 | print("serialVersionUID..."); |
---|
| 473 | |
---|
| 474 | result[0] = !SerializationHelper.needsUID(m_Classifier.getClass()); |
---|
| 475 | |
---|
| 476 | if (result[0]) |
---|
| 477 | println("yes"); |
---|
| 478 | else |
---|
| 479 | println("no"); |
---|
| 480 | |
---|
| 481 | return result; |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | /** |
---|
| 485 | * Checks whether the scheme can take command line options. |
---|
| 486 | * |
---|
| 487 | * @return index 0 is true if the classifier can take options |
---|
| 488 | */ |
---|
| 489 | protected boolean[] canTakeOptions() { |
---|
| 490 | |
---|
| 491 | boolean[] result = new boolean[2]; |
---|
| 492 | |
---|
| 493 | print("options..."); |
---|
| 494 | if (m_Classifier instanceof OptionHandler) { |
---|
| 495 | println("yes"); |
---|
| 496 | if (m_Debug) { |
---|
| 497 | println("\n=== Full report ==="); |
---|
| 498 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
| 499 | while (enu.hasMoreElements()) { |
---|
| 500 | Option option = (Option) enu.nextElement(); |
---|
| 501 | print(option.synopsis() + "\n" |
---|
| 502 | + option.description() + "\n"); |
---|
| 503 | } |
---|
| 504 | println("\n"); |
---|
| 505 | } |
---|
| 506 | result[0] = true; |
---|
| 507 | } |
---|
| 508 | else { |
---|
| 509 | println("no"); |
---|
| 510 | result[0] = false; |
---|
| 511 | } |
---|
| 512 | |
---|
| 513 | return result; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * Checks whether the scheme can build models incrementally. |
---|
| 518 | * |
---|
| 519 | * @return index 0 is true if the classifier can train incrementally |
---|
| 520 | */ |
---|
| 521 | protected boolean[] updateableClassifier() { |
---|
| 522 | |
---|
| 523 | boolean[] result = new boolean[2]; |
---|
| 524 | |
---|
| 525 | print("updateable classifier..."); |
---|
| 526 | if (m_Classifier instanceof UpdateableClassifier) { |
---|
| 527 | println("yes"); |
---|
| 528 | result[0] = true; |
---|
| 529 | } |
---|
| 530 | else { |
---|
| 531 | println("no"); |
---|
| 532 | result[0] = false; |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | return result; |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | /** |
---|
| 539 | * Checks whether the scheme says it can handle instance weights. |
---|
| 540 | * |
---|
| 541 | * @return true if the classifier handles instance weights |
---|
| 542 | */ |
---|
| 543 | protected boolean[] weightedInstancesHandler() { |
---|
| 544 | |
---|
| 545 | boolean[] result = new boolean[2]; |
---|
| 546 | |
---|
| 547 | print("weighted instances classifier..."); |
---|
| 548 | if (m_Classifier instanceof WeightedInstancesHandler) { |
---|
| 549 | println("yes"); |
---|
| 550 | result[0] = true; |
---|
| 551 | } |
---|
| 552 | else { |
---|
| 553 | println("no"); |
---|
| 554 | result[0] = false; |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | return result; |
---|
| 558 | } |
---|
| 559 | |
---|
| 560 | /** |
---|
| 561 | * Checks whether the scheme handles multi-instance data. |
---|
| 562 | * |
---|
| 563 | * @return true if the classifier handles multi-instance data |
---|
| 564 | */ |
---|
| 565 | protected boolean[] multiInstanceHandler() { |
---|
| 566 | boolean[] result = new boolean[2]; |
---|
| 567 | |
---|
| 568 | print("multi-instance classifier..."); |
---|
| 569 | if (m_Classifier instanceof MultiInstanceCapabilitiesHandler) { |
---|
| 570 | println("yes"); |
---|
| 571 | result[0] = true; |
---|
| 572 | } |
---|
| 573 | else { |
---|
| 574 | println("no"); |
---|
| 575 | result[0] = false; |
---|
| 576 | } |
---|
| 577 | |
---|
| 578 | return result; |
---|
| 579 | } |
---|
| 580 | |
---|
| 581 | /** |
---|
| 582 | * Checks basic prediction of the scheme, for simple non-troublesome |
---|
| 583 | * datasets. |
---|
| 584 | * |
---|
| 585 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 586 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 587 | * @param stringPredictor if true use string predictor attributes |
---|
| 588 | * @param datePredictor if true use date predictor attributes |
---|
| 589 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 590 | * @param multiInstance whether multi-instance is needed |
---|
| 591 | * @param classType the class type (NOMINAL, NUMERIC, etc.) |
---|
| 592 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 593 | * was acceptable |
---|
| 594 | */ |
---|
| 595 | protected boolean[] canPredict( |
---|
| 596 | boolean nominalPredictor, |
---|
| 597 | boolean numericPredictor, |
---|
| 598 | boolean stringPredictor, |
---|
| 599 | boolean datePredictor, |
---|
| 600 | boolean relationalPredictor, |
---|
| 601 | boolean multiInstance, |
---|
| 602 | int classType) { |
---|
| 603 | |
---|
| 604 | print("basic predict"); |
---|
| 605 | printAttributeSummary( |
---|
| 606 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 607 | print("..."); |
---|
| 608 | FastVector accepts = new FastVector(); |
---|
| 609 | accepts.addElement("unary"); |
---|
| 610 | accepts.addElement("binary"); |
---|
| 611 | accepts.addElement("nominal"); |
---|
| 612 | accepts.addElement("numeric"); |
---|
| 613 | accepts.addElement("string"); |
---|
| 614 | accepts.addElement("date"); |
---|
| 615 | accepts.addElement("relational"); |
---|
| 616 | accepts.addElement("multi-instance"); |
---|
| 617 | accepts.addElement("not in classpath"); |
---|
| 618 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 619 | numClasses = 2, missingLevel = 0; |
---|
| 620 | boolean predictorMissing = false, classMissing = false; |
---|
| 621 | |
---|
| 622 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 623 | datePredictor, relationalPredictor, |
---|
| 624 | multiInstance, |
---|
| 625 | classType, |
---|
| 626 | missingLevel, predictorMissing, classMissing, |
---|
| 627 | numTrain, numTest, numClasses, |
---|
| 628 | accepts); |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /** |
---|
| 632 | * Checks whether the scheme can handle data that contains only the class |
---|
| 633 | * attribute. If a scheme cannot build a proper model with that data, it |
---|
| 634 | * should default back to a ZeroR model. |
---|
| 635 | * |
---|
| 636 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 637 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 638 | * @param stringPredictor if true use string predictor attributes |
---|
| 639 | * @param datePredictor if true use date predictor attributes |
---|
| 640 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 641 | * @param classType the class type (NOMINAL, NUMERIC, etc.) |
---|
| 642 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 643 | * was acceptable |
---|
| 644 | */ |
---|
| 645 | protected boolean[] canHandleOnlyClass( |
---|
| 646 | boolean nominalPredictor, |
---|
| 647 | boolean numericPredictor, |
---|
| 648 | boolean stringPredictor, |
---|
| 649 | boolean datePredictor, |
---|
| 650 | boolean relationalPredictor, |
---|
| 651 | int classType) { |
---|
| 652 | |
---|
| 653 | print("only class in data"); |
---|
| 654 | printAttributeSummary( |
---|
| 655 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, false, classType); |
---|
| 656 | print("..."); |
---|
| 657 | FastVector accepts = new FastVector(); |
---|
| 658 | accepts.addElement("class"); |
---|
| 659 | accepts.addElement("zeror"); |
---|
| 660 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 661 | missingLevel = 0; |
---|
| 662 | boolean predictorMissing = false, classMissing = false; |
---|
| 663 | |
---|
| 664 | return runBasicTest(false, false, false, false, false, |
---|
| 665 | false, |
---|
| 666 | classType, |
---|
| 667 | missingLevel, predictorMissing, classMissing, |
---|
| 668 | numTrain, numTest, 2, |
---|
| 669 | accepts); |
---|
| 670 | } |
---|
| 671 | |
---|
| 672 | /** |
---|
| 673 | * Checks whether nominal schemes can handle more than two classes. |
---|
| 674 | * If a scheme is only designed for two-class problems it should |
---|
| 675 | * throw an appropriate exception for multi-class problems. |
---|
| 676 | * |
---|
| 677 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 678 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 679 | * @param stringPredictor if true use string predictor attributes |
---|
| 680 | * @param datePredictor if true use date predictor attributes |
---|
| 681 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 682 | * @param multiInstance whether multi-instance is needed |
---|
| 683 | * @param numClasses the number of classes to test |
---|
| 684 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 685 | * was acceptable |
---|
| 686 | */ |
---|
| 687 | protected boolean[] canHandleNClasses( |
---|
| 688 | boolean nominalPredictor, |
---|
| 689 | boolean numericPredictor, |
---|
| 690 | boolean stringPredictor, |
---|
| 691 | boolean datePredictor, |
---|
| 692 | boolean relationalPredictor, |
---|
| 693 | boolean multiInstance, |
---|
| 694 | int numClasses) { |
---|
| 695 | |
---|
| 696 | print("more than two class problems"); |
---|
| 697 | printAttributeSummary( |
---|
| 698 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL); |
---|
| 699 | print("..."); |
---|
| 700 | FastVector accepts = new FastVector(); |
---|
| 701 | accepts.addElement("number"); |
---|
| 702 | accepts.addElement("class"); |
---|
| 703 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 704 | missingLevel = 0; |
---|
| 705 | boolean predictorMissing = false, classMissing = false; |
---|
| 706 | |
---|
| 707 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 708 | datePredictor, relationalPredictor, |
---|
| 709 | multiInstance, |
---|
| 710 | Attribute.NOMINAL, |
---|
| 711 | missingLevel, predictorMissing, classMissing, |
---|
| 712 | numTrain, numTest, numClasses, |
---|
| 713 | accepts); |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /** |
---|
| 717 | * Checks whether the scheme can handle class attributes as Nth attribute. |
---|
| 718 | * |
---|
| 719 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 720 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 721 | * @param stringPredictor if true use string predictor attributes |
---|
| 722 | * @param datePredictor if true use date predictor attributes |
---|
| 723 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 724 | * @param multiInstance whether multi-instance is needed |
---|
| 725 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 726 | * @param classIndex the index of the class attribute (0-based, -1 means last attribute) |
---|
| 727 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 728 | * was acceptable |
---|
| 729 | * @see TestInstances#CLASS_IS_LAST |
---|
| 730 | */ |
---|
| 731 | protected boolean[] canHandleClassAsNthAttribute( |
---|
| 732 | boolean nominalPredictor, |
---|
| 733 | boolean numericPredictor, |
---|
| 734 | boolean stringPredictor, |
---|
| 735 | boolean datePredictor, |
---|
| 736 | boolean relationalPredictor, |
---|
| 737 | boolean multiInstance, |
---|
| 738 | int classType, |
---|
| 739 | int classIndex) { |
---|
| 740 | |
---|
| 741 | if (classIndex == TestInstances.CLASS_IS_LAST) |
---|
| 742 | print("class attribute as last attribute"); |
---|
| 743 | else |
---|
| 744 | print("class attribute as " + (classIndex + 1) + ". attribute"); |
---|
| 745 | printAttributeSummary( |
---|
| 746 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 747 | print("..."); |
---|
| 748 | FastVector accepts = new FastVector(); |
---|
| 749 | int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, |
---|
| 750 | missingLevel = 0; |
---|
| 751 | boolean predictorMissing = false, classMissing = false; |
---|
| 752 | |
---|
| 753 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 754 | datePredictor, relationalPredictor, |
---|
| 755 | multiInstance, |
---|
| 756 | classType, |
---|
| 757 | classIndex, |
---|
| 758 | missingLevel, predictorMissing, classMissing, |
---|
| 759 | numTrain, numTest, numClasses, |
---|
| 760 | accepts); |
---|
| 761 | } |
---|
| 762 | |
---|
| 763 | /** |
---|
| 764 | * Checks whether the scheme can handle zero training instances. |
---|
| 765 | * |
---|
| 766 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 767 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 768 | * @param stringPredictor if true use string predictor attributes |
---|
| 769 | * @param datePredictor if true use date predictor attributes |
---|
| 770 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 771 | * @param multiInstance whether multi-instance is needed |
---|
| 772 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 773 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 774 | * was acceptable |
---|
| 775 | */ |
---|
| 776 | protected boolean[] canHandleZeroTraining( |
---|
| 777 | boolean nominalPredictor, |
---|
| 778 | boolean numericPredictor, |
---|
| 779 | boolean stringPredictor, |
---|
| 780 | boolean datePredictor, |
---|
| 781 | boolean relationalPredictor, |
---|
| 782 | boolean multiInstance, |
---|
| 783 | int classType) { |
---|
| 784 | |
---|
| 785 | print("handle zero training instances"); |
---|
| 786 | printAttributeSummary( |
---|
| 787 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 788 | print("..."); |
---|
| 789 | FastVector accepts = new FastVector(); |
---|
| 790 | accepts.addElement("train"); |
---|
| 791 | accepts.addElement("value"); |
---|
| 792 | int numTrain = 0, numTest = getNumInstances(), numClasses = 2, |
---|
| 793 | missingLevel = 0; |
---|
| 794 | boolean predictorMissing = false, classMissing = false; |
---|
| 795 | |
---|
| 796 | return runBasicTest( |
---|
| 797 | nominalPredictor, numericPredictor, stringPredictor, |
---|
| 798 | datePredictor, relationalPredictor, |
---|
| 799 | multiInstance, |
---|
| 800 | classType, |
---|
| 801 | missingLevel, predictorMissing, classMissing, |
---|
| 802 | numTrain, numTest, numClasses, |
---|
| 803 | accepts); |
---|
| 804 | } |
---|
| 805 | |
---|
| 806 | /** |
---|
| 807 | * Checks whether the scheme correctly initialises models when |
---|
| 808 | * buildClassifier is called. This test calls buildClassifier with |
---|
| 809 | * one training dataset and records performance on a test set. |
---|
| 810 | * buildClassifier is then called on a training set with different |
---|
| 811 | * structure, and then again with the original training set. The |
---|
| 812 | * performance on the test set is compared with the original results |
---|
| 813 | * and any performance difference noted as incorrect build initialisation. |
---|
| 814 | * |
---|
| 815 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 816 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 817 | * @param stringPredictor if true use string predictor attributes |
---|
| 818 | * @param datePredictor if true use date predictor attributes |
---|
| 819 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 820 | * @param multiInstance whether multi-instance is needed |
---|
| 821 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 822 | * @return index 0 is true if the test was passed, index 1 is true if the |
---|
| 823 | * scheme performs worse than ZeroR, but without error (index 0 is |
---|
| 824 | * false) |
---|
| 825 | */ |
---|
| 826 | protected boolean[] correctBuildInitialisation( |
---|
| 827 | boolean nominalPredictor, |
---|
| 828 | boolean numericPredictor, |
---|
| 829 | boolean stringPredictor, |
---|
| 830 | boolean datePredictor, |
---|
| 831 | boolean relationalPredictor, |
---|
| 832 | boolean multiInstance, |
---|
| 833 | int classType) { |
---|
| 834 | |
---|
| 835 | boolean[] result = new boolean[2]; |
---|
| 836 | |
---|
| 837 | print("correct initialisation during buildClassifier"); |
---|
| 838 | printAttributeSummary( |
---|
| 839 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 840 | print("..."); |
---|
| 841 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 842 | numClasses = 2, missingLevel = 0; |
---|
| 843 | boolean predictorMissing = false, classMissing = false; |
---|
| 844 | |
---|
| 845 | Instances train1 = null; |
---|
| 846 | Instances test1 = null; |
---|
| 847 | Instances train2 = null; |
---|
| 848 | Instances test2 = null; |
---|
| 849 | Classifier classifier = null; |
---|
| 850 | Evaluation evaluation1A = null; |
---|
| 851 | Evaluation evaluation1B = null; |
---|
| 852 | Evaluation evaluation2 = null; |
---|
| 853 | boolean built = false; |
---|
| 854 | int stage = 0; |
---|
| 855 | try { |
---|
| 856 | |
---|
| 857 | // Make two sets of train/test splits with different |
---|
| 858 | // numbers of attributes |
---|
| 859 | train1 = makeTestDataset(42, numTrain, |
---|
| 860 | nominalPredictor ? getNumNominal() : 0, |
---|
| 861 | numericPredictor ? getNumNumeric() : 0, |
---|
| 862 | stringPredictor ? getNumString() : 0, |
---|
| 863 | datePredictor ? getNumDate() : 0, |
---|
| 864 | relationalPredictor ? getNumRelational() : 0, |
---|
| 865 | numClasses, |
---|
| 866 | classType, |
---|
| 867 | multiInstance); |
---|
| 868 | train2 = makeTestDataset(84, numTrain, |
---|
| 869 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 870 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 871 | stringPredictor ? getNumString() : 0, |
---|
| 872 | datePredictor ? getNumDate() : 0, |
---|
| 873 | relationalPredictor ? getNumRelational() : 0, |
---|
| 874 | numClasses, |
---|
| 875 | classType, |
---|
| 876 | multiInstance); |
---|
| 877 | test1 = makeTestDataset(24, numTest, |
---|
| 878 | nominalPredictor ? getNumNominal() : 0, |
---|
| 879 | numericPredictor ? getNumNumeric() : 0, |
---|
| 880 | stringPredictor ? getNumString() : 0, |
---|
| 881 | datePredictor ? getNumDate() : 0, |
---|
| 882 | relationalPredictor ? getNumRelational() : 0, |
---|
| 883 | numClasses, |
---|
| 884 | classType, |
---|
| 885 | multiInstance); |
---|
| 886 | test2 = makeTestDataset(48, numTest, |
---|
| 887 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 888 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 889 | stringPredictor ? getNumString() : 0, |
---|
| 890 | datePredictor ? getNumDate() : 0, |
---|
| 891 | relationalPredictor ? getNumRelational() : 0, |
---|
| 892 | numClasses, |
---|
| 893 | classType, |
---|
| 894 | multiInstance); |
---|
| 895 | if (missingLevel > 0) { |
---|
| 896 | addMissing(train1, missingLevel, predictorMissing, classMissing); |
---|
| 897 | addMissing(test1, Math.min(missingLevel,50), predictorMissing, |
---|
| 898 | classMissing); |
---|
| 899 | addMissing(train2, missingLevel, predictorMissing, classMissing); |
---|
| 900 | addMissing(test2, Math.min(missingLevel,50), predictorMissing, |
---|
| 901 | classMissing); |
---|
| 902 | } |
---|
| 903 | |
---|
| 904 | classifier = AbstractClassifier.makeCopies(getClassifier(), 1)[0]; |
---|
| 905 | evaluation1A = new Evaluation(train1); |
---|
| 906 | evaluation1B = new Evaluation(train1); |
---|
| 907 | evaluation2 = new Evaluation(train2); |
---|
| 908 | } catch (Exception ex) { |
---|
| 909 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 910 | } |
---|
| 911 | try { |
---|
| 912 | stage = 0; |
---|
| 913 | classifier.buildClassifier(train1); |
---|
| 914 | built = true; |
---|
| 915 | if (!testWRTZeroR(classifier, evaluation1A, train1, test1)[0]) { |
---|
| 916 | throw new Exception("Scheme performs worse than ZeroR"); |
---|
| 917 | } |
---|
| 918 | |
---|
| 919 | stage = 1; |
---|
| 920 | built = false; |
---|
| 921 | classifier.buildClassifier(train2); |
---|
| 922 | built = true; |
---|
| 923 | if (!testWRTZeroR(classifier, evaluation2, train2, test2)[0]) { |
---|
| 924 | throw new Exception("Scheme performs worse than ZeroR"); |
---|
| 925 | } |
---|
| 926 | |
---|
| 927 | stage = 2; |
---|
| 928 | built = false; |
---|
| 929 | classifier.buildClassifier(train1); |
---|
| 930 | built = true; |
---|
| 931 | if (!testWRTZeroR(classifier, evaluation1B, train1, test1)[0]) { |
---|
| 932 | throw new Exception("Scheme performs worse than ZeroR"); |
---|
| 933 | } |
---|
| 934 | |
---|
| 935 | stage = 3; |
---|
| 936 | if (!evaluation1A.equals(evaluation1B)) { |
---|
| 937 | if (m_Debug) { |
---|
| 938 | println("\n=== Full report ===\n" |
---|
| 939 | + evaluation1A.toSummaryString("\nFirst buildClassifier()", |
---|
| 940 | true) |
---|
| 941 | + "\n\n"); |
---|
| 942 | println( |
---|
| 943 | evaluation1B.toSummaryString("\nSecond buildClassifier()", |
---|
| 944 | true) |
---|
| 945 | + "\n\n"); |
---|
| 946 | } |
---|
| 947 | throw new Exception("Results differ between buildClassifier calls"); |
---|
| 948 | } |
---|
| 949 | println("yes"); |
---|
| 950 | result[0] = true; |
---|
| 951 | |
---|
| 952 | if (false && m_Debug) { |
---|
| 953 | println("\n=== Full report ===\n" |
---|
| 954 | + evaluation1A.toSummaryString("\nFirst buildClassifier()", |
---|
| 955 | true) |
---|
| 956 | + "\n\n"); |
---|
| 957 | println( |
---|
| 958 | evaluation1B.toSummaryString("\nSecond buildClassifier()", |
---|
| 959 | true) |
---|
| 960 | + "\n\n"); |
---|
| 961 | } |
---|
| 962 | } |
---|
| 963 | catch (Exception ex) { |
---|
| 964 | String msg = ex.getMessage().toLowerCase(); |
---|
| 965 | if (msg.indexOf("worse than zeror") >= 0) { |
---|
| 966 | println("warning: performs worse than ZeroR"); |
---|
| 967 | result[0] = (stage < 1); |
---|
| 968 | result[1] = (stage < 1); |
---|
| 969 | } else { |
---|
| 970 | println("no"); |
---|
| 971 | result[0] = false; |
---|
| 972 | } |
---|
| 973 | if (m_Debug) { |
---|
| 974 | println("\n=== Full Report ==="); |
---|
| 975 | print("Problem during"); |
---|
| 976 | if (built) { |
---|
| 977 | print(" testing"); |
---|
| 978 | } else { |
---|
| 979 | print(" training"); |
---|
| 980 | } |
---|
| 981 | switch (stage) { |
---|
| 982 | case 0: |
---|
| 983 | print(" of dataset 1"); |
---|
| 984 | break; |
---|
| 985 | case 1: |
---|
| 986 | print(" of dataset 2"); |
---|
| 987 | break; |
---|
| 988 | case 2: |
---|
| 989 | print(" of dataset 1 (2nd build)"); |
---|
| 990 | break; |
---|
| 991 | case 3: |
---|
| 992 | print(", comparing results from builds of dataset 1"); |
---|
| 993 | break; |
---|
| 994 | } |
---|
| 995 | println(": " + ex.getMessage() + "\n"); |
---|
| 996 | println("here are the datasets:\n"); |
---|
| 997 | println("=== Train1 Dataset ===\n" |
---|
| 998 | + train1.toString() + "\n"); |
---|
| 999 | println("=== Test1 Dataset ===\n" |
---|
| 1000 | + test1.toString() + "\n\n"); |
---|
| 1001 | println("=== Train2 Dataset ===\n" |
---|
| 1002 | + train2.toString() + "\n"); |
---|
| 1003 | println("=== Test2 Dataset ===\n" |
---|
| 1004 | + test2.toString() + "\n\n"); |
---|
| 1005 | } |
---|
| 1006 | } |
---|
| 1007 | |
---|
| 1008 | return result; |
---|
| 1009 | } |
---|
| 1010 | |
---|
| 1011 | /** |
---|
| 1012 | * Checks basic missing value handling of the scheme. If the missing |
---|
| 1013 | * values cause an exception to be thrown by the scheme, this will be |
---|
| 1014 | * recorded. |
---|
| 1015 | * |
---|
| 1016 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1017 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1018 | * @param stringPredictor if true use string predictor attributes |
---|
| 1019 | * @param datePredictor if true use date predictor attributes |
---|
| 1020 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1021 | * @param multiInstance whether multi-instance is needed |
---|
| 1022 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1023 | * @param predictorMissing true if the missing values may be in |
---|
| 1024 | * the predictors |
---|
| 1025 | * @param classMissing true if the missing values may be in the class |
---|
| 1026 | * @param missingLevel the percentage of missing values |
---|
| 1027 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1028 | * was acceptable |
---|
| 1029 | */ |
---|
| 1030 | protected boolean[] canHandleMissing( |
---|
| 1031 | boolean nominalPredictor, |
---|
| 1032 | boolean numericPredictor, |
---|
| 1033 | boolean stringPredictor, |
---|
| 1034 | boolean datePredictor, |
---|
| 1035 | boolean relationalPredictor, |
---|
| 1036 | boolean multiInstance, |
---|
| 1037 | int classType, |
---|
| 1038 | boolean predictorMissing, |
---|
| 1039 | boolean classMissing, |
---|
| 1040 | int missingLevel) { |
---|
| 1041 | |
---|
| 1042 | if (missingLevel == 100) |
---|
| 1043 | print("100% "); |
---|
| 1044 | print("missing"); |
---|
| 1045 | if (predictorMissing) { |
---|
| 1046 | print(" predictor"); |
---|
| 1047 | if (classMissing) |
---|
| 1048 | print(" and"); |
---|
| 1049 | } |
---|
| 1050 | if (classMissing) |
---|
| 1051 | print(" class"); |
---|
| 1052 | print(" values"); |
---|
| 1053 | printAttributeSummary( |
---|
| 1054 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1055 | print("..."); |
---|
| 1056 | FastVector accepts = new FastVector(); |
---|
| 1057 | accepts.addElement("missing"); |
---|
| 1058 | accepts.addElement("value"); |
---|
| 1059 | accepts.addElement("train"); |
---|
| 1060 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 1061 | numClasses = 2; |
---|
| 1062 | |
---|
| 1063 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 1064 | datePredictor, relationalPredictor, |
---|
| 1065 | multiInstance, |
---|
| 1066 | classType, |
---|
| 1067 | missingLevel, predictorMissing, classMissing, |
---|
| 1068 | numTrain, numTest, numClasses, |
---|
| 1069 | accepts); |
---|
| 1070 | } |
---|
| 1071 | |
---|
| 1072 | /** |
---|
| 1073 | * Checks whether an updateable scheme produces the same model when |
---|
| 1074 | * trained incrementally as when batch trained. The model itself |
---|
| 1075 | * cannot be compared, so we compare the evaluation on test data |
---|
| 1076 | * for both models. It is possible to get a false positive on this |
---|
| 1077 | * test (likelihood depends on the classifier). |
---|
| 1078 | * |
---|
| 1079 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1080 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1081 | * @param stringPredictor if true use string predictor attributes |
---|
| 1082 | * @param datePredictor if true use date predictor attributes |
---|
| 1083 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1084 | * @param multiInstance whether multi-instance is needed |
---|
| 1085 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1086 | * @return index 0 is true if the test was passed |
---|
| 1087 | */ |
---|
| 1088 | protected boolean[] updatingEquality( |
---|
| 1089 | boolean nominalPredictor, |
---|
| 1090 | boolean numericPredictor, |
---|
| 1091 | boolean stringPredictor, |
---|
| 1092 | boolean datePredictor, |
---|
| 1093 | boolean relationalPredictor, |
---|
| 1094 | boolean multiInstance, |
---|
| 1095 | int classType) { |
---|
| 1096 | |
---|
| 1097 | print("incremental training produces the same results" |
---|
| 1098 | + " as batch training"); |
---|
| 1099 | printAttributeSummary( |
---|
| 1100 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1101 | print("..."); |
---|
| 1102 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 1103 | numClasses = 2, missingLevel = 0; |
---|
| 1104 | boolean predictorMissing = false, classMissing = false; |
---|
| 1105 | |
---|
| 1106 | boolean[] result = new boolean[2]; |
---|
| 1107 | Instances train = null; |
---|
| 1108 | Instances test = null; |
---|
| 1109 | Classifier [] classifiers = null; |
---|
| 1110 | Evaluation evaluationB = null; |
---|
| 1111 | Evaluation evaluationI = null; |
---|
| 1112 | boolean built = false; |
---|
| 1113 | try { |
---|
| 1114 | train = makeTestDataset(42, numTrain, |
---|
| 1115 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1116 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1117 | stringPredictor ? getNumString() : 0, |
---|
| 1118 | datePredictor ? getNumDate() : 0, |
---|
| 1119 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1120 | numClasses, |
---|
| 1121 | classType, |
---|
| 1122 | multiInstance); |
---|
| 1123 | test = makeTestDataset(24, numTest, |
---|
| 1124 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1125 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1126 | stringPredictor ? getNumString() : 0, |
---|
| 1127 | datePredictor ? getNumDate() : 0, |
---|
| 1128 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1129 | numClasses, |
---|
| 1130 | classType, |
---|
| 1131 | multiInstance); |
---|
| 1132 | if (missingLevel > 0) { |
---|
| 1133 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1134 | addMissing(test, Math.min(missingLevel, 50), predictorMissing, |
---|
| 1135 | classMissing); |
---|
| 1136 | } |
---|
| 1137 | classifiers = AbstractClassifier.makeCopies(getClassifier(), 2); |
---|
| 1138 | evaluationB = new Evaluation(train); |
---|
| 1139 | evaluationI = new Evaluation(train); |
---|
| 1140 | classifiers[0].buildClassifier(train); |
---|
| 1141 | testWRTZeroR(classifiers[0], evaluationB, train, test); |
---|
| 1142 | } catch (Exception ex) { |
---|
| 1143 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1144 | } |
---|
| 1145 | try { |
---|
| 1146 | classifiers[1].buildClassifier(new Instances(train, 0)); |
---|
| 1147 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1148 | ((UpdateableClassifier)classifiers[1]).updateClassifier( |
---|
| 1149 | train.instance(i)); |
---|
| 1150 | } |
---|
| 1151 | built = true; |
---|
| 1152 | testWRTZeroR(classifiers[1], evaluationI, train, test); |
---|
| 1153 | if (!evaluationB.equals(evaluationI)) { |
---|
| 1154 | println("no"); |
---|
| 1155 | result[0] = false; |
---|
| 1156 | |
---|
| 1157 | if (m_Debug) { |
---|
| 1158 | println("\n=== Full Report ==="); |
---|
| 1159 | println("Results differ between batch and " |
---|
| 1160 | + "incrementally built models.\n" |
---|
| 1161 | + "Depending on the classifier, this may be OK"); |
---|
| 1162 | println("Here are the results:\n"); |
---|
| 1163 | println(evaluationB.toSummaryString( |
---|
| 1164 | "\nbatch built results\n", true)); |
---|
| 1165 | println(evaluationI.toSummaryString( |
---|
| 1166 | "\nincrementally built results\n", true)); |
---|
| 1167 | println("Here are the datasets:\n"); |
---|
| 1168 | println("=== Train Dataset ===\n" |
---|
| 1169 | + train.toString() + "\n"); |
---|
| 1170 | println("=== Test Dataset ===\n" |
---|
| 1171 | + test.toString() + "\n\n"); |
---|
| 1172 | } |
---|
| 1173 | } |
---|
| 1174 | else { |
---|
| 1175 | println("yes"); |
---|
| 1176 | result[0] = true; |
---|
| 1177 | } |
---|
| 1178 | } catch (Exception ex) { |
---|
| 1179 | result[0] = false; |
---|
| 1180 | |
---|
| 1181 | print("Problem during"); |
---|
| 1182 | if (built) |
---|
| 1183 | print(" testing"); |
---|
| 1184 | else |
---|
| 1185 | print(" training"); |
---|
| 1186 | println(": " + ex.getMessage() + "\n"); |
---|
| 1187 | } |
---|
| 1188 | |
---|
| 1189 | return result; |
---|
| 1190 | } |
---|
| 1191 | |
---|
| 1192 | /** |
---|
| 1193 | * Checks whether the classifier erroneously uses the class |
---|
| 1194 | * value of test instances (if provided). Runs the classifier with |
---|
| 1195 | * test instance class values set to missing and compares with results |
---|
| 1196 | * when test instance class values are left intact. |
---|
| 1197 | * |
---|
| 1198 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1199 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1200 | * @param stringPredictor if true use string predictor attributes |
---|
| 1201 | * @param datePredictor if true use date predictor attributes |
---|
| 1202 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1203 | * @param multiInstance whether multi-instance is needed |
---|
| 1204 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1205 | * @return index 0 is true if the test was passed |
---|
| 1206 | */ |
---|
| 1207 | protected boolean[] doesntUseTestClassVal( |
---|
| 1208 | boolean nominalPredictor, |
---|
| 1209 | boolean numericPredictor, |
---|
| 1210 | boolean stringPredictor, |
---|
| 1211 | boolean datePredictor, |
---|
| 1212 | boolean relationalPredictor, |
---|
| 1213 | boolean multiInstance, |
---|
| 1214 | int classType) { |
---|
| 1215 | |
---|
| 1216 | print("classifier ignores test instance class vals"); |
---|
| 1217 | printAttributeSummary( |
---|
| 1218 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1219 | print("..."); |
---|
| 1220 | int numTrain = 2*getNumInstances(), numTest = getNumInstances(), |
---|
| 1221 | numClasses = 2, missingLevel = 0; |
---|
| 1222 | boolean predictorMissing = false, classMissing = false; |
---|
| 1223 | |
---|
| 1224 | boolean[] result = new boolean[2]; |
---|
| 1225 | Instances train = null; |
---|
| 1226 | Instances test = null; |
---|
| 1227 | Classifier [] classifiers = null; |
---|
| 1228 | boolean evalFail = false; |
---|
| 1229 | try { |
---|
| 1230 | train = makeTestDataset(42, numTrain, |
---|
| 1231 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 1232 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 1233 | stringPredictor ? getNumString() : 0, |
---|
| 1234 | datePredictor ? getNumDate() : 0, |
---|
| 1235 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1236 | numClasses, |
---|
| 1237 | classType, |
---|
| 1238 | multiInstance); |
---|
| 1239 | test = makeTestDataset(24, numTest, |
---|
| 1240 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 1241 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 1242 | stringPredictor ? getNumString() : 0, |
---|
| 1243 | datePredictor ? getNumDate() : 0, |
---|
| 1244 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1245 | numClasses, |
---|
| 1246 | classType, |
---|
| 1247 | multiInstance); |
---|
| 1248 | if (missingLevel > 0) { |
---|
| 1249 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1250 | addMissing(test, Math.min(missingLevel, 50), predictorMissing, |
---|
| 1251 | classMissing); |
---|
| 1252 | } |
---|
| 1253 | classifiers = AbstractClassifier.makeCopies(getClassifier(), 2); |
---|
| 1254 | classifiers[0].buildClassifier(train); |
---|
| 1255 | classifiers[1].buildClassifier(train); |
---|
| 1256 | } catch (Exception ex) { |
---|
| 1257 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1258 | } |
---|
| 1259 | try { |
---|
| 1260 | |
---|
| 1261 | // Now set test values to missing when predicting |
---|
| 1262 | for (int i = 0; i < test.numInstances(); i++) { |
---|
| 1263 | Instance testInst = test.instance(i); |
---|
| 1264 | Instance classMissingInst = (Instance)testInst.copy(); |
---|
| 1265 | classMissingInst.setDataset(test); |
---|
| 1266 | classMissingInst.setClassMissing(); |
---|
| 1267 | double [] dist0 = classifiers[0].distributionForInstance(testInst); |
---|
| 1268 | double [] dist1 = classifiers[1].distributionForInstance(classMissingInst); |
---|
| 1269 | for (int j = 0; j < dist0.length; j++) { |
---|
| 1270 | // ignore, if both are NaNs |
---|
| 1271 | if (Double.isNaN(dist0[j]) && Double.isNaN(dist1[j])) { |
---|
| 1272 | if (getDebug()) |
---|
| 1273 | System.out.println("Both predictions are NaN!"); |
---|
| 1274 | continue; |
---|
| 1275 | } |
---|
| 1276 | // distribution different? |
---|
| 1277 | if (dist0[j] != dist1[j]) { |
---|
| 1278 | throw new Exception("Prediction different for instance " + (i + 1)); |
---|
| 1279 | } |
---|
| 1280 | } |
---|
| 1281 | } |
---|
| 1282 | |
---|
| 1283 | println("yes"); |
---|
| 1284 | result[0] = true; |
---|
| 1285 | } catch (Exception ex) { |
---|
| 1286 | println("no"); |
---|
| 1287 | result[0] = false; |
---|
| 1288 | |
---|
| 1289 | if (m_Debug) { |
---|
| 1290 | println("\n=== Full Report ==="); |
---|
| 1291 | |
---|
| 1292 | if (evalFail) { |
---|
| 1293 | println("Results differ between non-missing and " |
---|
| 1294 | + "missing test class values."); |
---|
| 1295 | } else { |
---|
| 1296 | print("Problem during testing"); |
---|
| 1297 | println(": " + ex.getMessage() + "\n"); |
---|
| 1298 | } |
---|
| 1299 | println("Here are the datasets:\n"); |
---|
| 1300 | println("=== Train Dataset ===\n" |
---|
| 1301 | + train.toString() + "\n"); |
---|
| 1302 | println("=== Train Weights ===\n"); |
---|
| 1303 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1304 | println(" " + (i + 1) |
---|
| 1305 | + " " + train.instance(i).weight()); |
---|
| 1306 | } |
---|
| 1307 | println("=== Test Dataset ===\n" |
---|
| 1308 | + test.toString() + "\n\n"); |
---|
| 1309 | println("(test weights all 1.0\n"); |
---|
| 1310 | } |
---|
| 1311 | } |
---|
| 1312 | |
---|
| 1313 | return result; |
---|
| 1314 | } |
---|
| 1315 | |
---|
| 1316 | /** |
---|
| 1317 | * Checks whether the classifier can handle instance weights. |
---|
| 1318 | * This test compares the classifier performance on two datasets |
---|
| 1319 | * that are identical except for the training weights. If the |
---|
| 1320 | * results change, then the classifier must be using the weights. It |
---|
| 1321 | * may be possible to get a false positive from this test if the |
---|
| 1322 | * weight changes aren't significant enough to induce a change |
---|
| 1323 | * in classifier performance (but the weights are chosen to minimize |
---|
| 1324 | * the likelihood of this). |
---|
| 1325 | * |
---|
| 1326 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1327 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1328 | * @param stringPredictor if true use string predictor attributes |
---|
| 1329 | * @param datePredictor if true use date predictor attributes |
---|
| 1330 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1331 | * @param multiInstance whether multi-instance is needed |
---|
| 1332 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1333 | * @return index 0 true if the test was passed |
---|
| 1334 | */ |
---|
| 1335 | protected boolean[] instanceWeights( |
---|
| 1336 | boolean nominalPredictor, |
---|
| 1337 | boolean numericPredictor, |
---|
| 1338 | boolean stringPredictor, |
---|
| 1339 | boolean datePredictor, |
---|
| 1340 | boolean relationalPredictor, |
---|
| 1341 | boolean multiInstance, |
---|
| 1342 | int classType) { |
---|
| 1343 | |
---|
| 1344 | print("classifier uses instance weights"); |
---|
| 1345 | printAttributeSummary( |
---|
| 1346 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1347 | print("..."); |
---|
| 1348 | int numTrain = 2*getNumInstances(), numTest = getNumInstances(), |
---|
| 1349 | numClasses = 2, missingLevel = 0; |
---|
| 1350 | boolean predictorMissing = false, classMissing = false; |
---|
| 1351 | |
---|
| 1352 | boolean[] result = new boolean[2]; |
---|
| 1353 | Instances train = null; |
---|
| 1354 | Instances test = null; |
---|
| 1355 | Classifier [] classifiers = null; |
---|
| 1356 | Evaluation evaluationB = null; |
---|
| 1357 | Evaluation evaluationI = null; |
---|
| 1358 | boolean built = false; |
---|
| 1359 | boolean evalFail = false; |
---|
| 1360 | try { |
---|
| 1361 | train = makeTestDataset(42, numTrain, |
---|
| 1362 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 1363 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 1364 | stringPredictor ? getNumString() : 0, |
---|
| 1365 | datePredictor ? getNumDate() : 0, |
---|
| 1366 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1367 | numClasses, |
---|
| 1368 | classType, |
---|
| 1369 | multiInstance); |
---|
| 1370 | test = makeTestDataset(24, numTest, |
---|
| 1371 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 1372 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 1373 | stringPredictor ? getNumString() : 0, |
---|
| 1374 | datePredictor ? getNumDate() : 0, |
---|
| 1375 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1376 | numClasses, |
---|
| 1377 | classType, |
---|
| 1378 | multiInstance); |
---|
| 1379 | if (missingLevel > 0) { |
---|
| 1380 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1381 | addMissing(test, Math.min(missingLevel, 50), predictorMissing, |
---|
| 1382 | classMissing); |
---|
| 1383 | } |
---|
| 1384 | classifiers = AbstractClassifier.makeCopies(getClassifier(), 2); |
---|
| 1385 | evaluationB = new Evaluation(train); |
---|
| 1386 | evaluationI = new Evaluation(train); |
---|
| 1387 | classifiers[0].buildClassifier(train); |
---|
| 1388 | testWRTZeroR(classifiers[0], evaluationB, train, test); |
---|
| 1389 | } catch (Exception ex) { |
---|
| 1390 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1391 | } |
---|
| 1392 | try { |
---|
| 1393 | |
---|
| 1394 | // Now modify instance weights and re-built/test |
---|
| 1395 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1396 | train.instance(i).setWeight(0); |
---|
| 1397 | } |
---|
| 1398 | Random random = new Random(1); |
---|
| 1399 | for (int i = 0; i < train.numInstances() / 2; i++) { |
---|
| 1400 | int inst = Math.abs(random.nextInt()) % train.numInstances(); |
---|
| 1401 | int weight = Math.abs(random.nextInt()) % 10 + 1; |
---|
| 1402 | train.instance(inst).setWeight(weight); |
---|
| 1403 | } |
---|
| 1404 | classifiers[1].buildClassifier(train); |
---|
| 1405 | built = true; |
---|
| 1406 | testWRTZeroR(classifiers[1], evaluationI, train, test); |
---|
| 1407 | if (evaluationB.equals(evaluationI)) { |
---|
| 1408 | // println("no"); |
---|
| 1409 | evalFail = true; |
---|
| 1410 | throw new Exception("evalFail"); |
---|
| 1411 | } |
---|
| 1412 | |
---|
| 1413 | println("yes"); |
---|
| 1414 | result[0] = true; |
---|
| 1415 | } catch (Exception ex) { |
---|
| 1416 | println("no"); |
---|
| 1417 | result[0] = false; |
---|
| 1418 | |
---|
| 1419 | if (m_Debug) { |
---|
| 1420 | println("\n=== Full Report ==="); |
---|
| 1421 | |
---|
| 1422 | if (evalFail) { |
---|
| 1423 | println("Results don't differ between non-weighted and " |
---|
| 1424 | + "weighted instance models."); |
---|
| 1425 | println("Here are the results:\n"); |
---|
| 1426 | println(evaluationB.toSummaryString("\nboth methods\n", |
---|
| 1427 | true)); |
---|
| 1428 | } else { |
---|
| 1429 | print("Problem during"); |
---|
| 1430 | if (built) { |
---|
| 1431 | print(" testing"); |
---|
| 1432 | } else { |
---|
| 1433 | print(" training"); |
---|
| 1434 | } |
---|
| 1435 | println(": " + ex.getMessage() + "\n"); |
---|
| 1436 | } |
---|
| 1437 | println("Here are the datasets:\n"); |
---|
| 1438 | println("=== Train Dataset ===\n" |
---|
| 1439 | + train.toString() + "\n"); |
---|
| 1440 | println("=== Train Weights ===\n"); |
---|
| 1441 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1442 | println(" " + (i + 1) |
---|
| 1443 | + " " + train.instance(i).weight()); |
---|
| 1444 | } |
---|
| 1445 | println("=== Test Dataset ===\n" |
---|
| 1446 | + test.toString() + "\n\n"); |
---|
| 1447 | println("(test weights all 1.0\n"); |
---|
| 1448 | } |
---|
| 1449 | } |
---|
| 1450 | |
---|
| 1451 | return result; |
---|
| 1452 | } |
---|
| 1453 | |
---|
| 1454 | /** |
---|
| 1455 | * Checks whether the scheme alters the training dataset during |
---|
| 1456 | * training. If the scheme needs to modify the training |
---|
| 1457 | * data it should take a copy of the training data. Currently checks |
---|
| 1458 | * for changes to header structure, number of instances, order of |
---|
| 1459 | * instances, instance weights. |
---|
| 1460 | * |
---|
| 1461 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1462 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1463 | * @param stringPredictor if true use string predictor attributes |
---|
| 1464 | * @param datePredictor if true use date predictor attributes |
---|
| 1465 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1466 | * @param multiInstance whether multi-instance is needed |
---|
| 1467 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1468 | * @param predictorMissing true if we know the classifier can handle |
---|
| 1469 | * (at least) moderate missing predictor values |
---|
| 1470 | * @param classMissing true if we know the classifier can handle |
---|
| 1471 | * (at least) moderate missing class values |
---|
| 1472 | * @return index 0 is true if the test was passed |
---|
| 1473 | */ |
---|
| 1474 | protected boolean[] datasetIntegrity( |
---|
| 1475 | boolean nominalPredictor, |
---|
| 1476 | boolean numericPredictor, |
---|
| 1477 | boolean stringPredictor, |
---|
| 1478 | boolean datePredictor, |
---|
| 1479 | boolean relationalPredictor, |
---|
| 1480 | boolean multiInstance, |
---|
| 1481 | int classType, |
---|
| 1482 | boolean predictorMissing, |
---|
| 1483 | boolean classMissing) { |
---|
| 1484 | |
---|
| 1485 | print("classifier doesn't alter original datasets"); |
---|
| 1486 | printAttributeSummary( |
---|
| 1487 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1488 | print("..."); |
---|
| 1489 | int numTrain = getNumInstances(), numTest = getNumInstances(), |
---|
| 1490 | numClasses = 2, missingLevel = 20; |
---|
| 1491 | |
---|
| 1492 | boolean[] result = new boolean[2]; |
---|
| 1493 | Instances train = null; |
---|
| 1494 | Instances test = null; |
---|
| 1495 | Classifier classifier = null; |
---|
| 1496 | Evaluation evaluation = null; |
---|
| 1497 | boolean built = false; |
---|
| 1498 | try { |
---|
| 1499 | train = makeTestDataset(42, numTrain, |
---|
| 1500 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1501 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1502 | stringPredictor ? getNumString() : 0, |
---|
| 1503 | datePredictor ? getNumDate() : 0, |
---|
| 1504 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1505 | numClasses, |
---|
| 1506 | classType, |
---|
| 1507 | multiInstance); |
---|
| 1508 | test = makeTestDataset(24, numTest, |
---|
| 1509 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1510 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1511 | stringPredictor ? getNumString() : 0, |
---|
| 1512 | datePredictor ? getNumDate() : 0, |
---|
| 1513 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1514 | numClasses, |
---|
| 1515 | classType, |
---|
| 1516 | multiInstance); |
---|
| 1517 | if (missingLevel > 0) { |
---|
| 1518 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1519 | addMissing(test, Math.min(missingLevel, 50), predictorMissing, |
---|
| 1520 | classMissing); |
---|
| 1521 | } |
---|
| 1522 | classifier = AbstractClassifier.makeCopies(getClassifier(), 1)[0]; |
---|
| 1523 | evaluation = new Evaluation(train); |
---|
| 1524 | } catch (Exception ex) { |
---|
| 1525 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1526 | } |
---|
| 1527 | try { |
---|
| 1528 | Instances trainCopy = new Instances(train); |
---|
| 1529 | Instances testCopy = new Instances(test); |
---|
| 1530 | classifier.buildClassifier(trainCopy); |
---|
| 1531 | compareDatasets(train, trainCopy); |
---|
| 1532 | built = true; |
---|
| 1533 | testWRTZeroR(classifier, evaluation, trainCopy, testCopy); |
---|
| 1534 | compareDatasets(test, testCopy); |
---|
| 1535 | |
---|
| 1536 | println("yes"); |
---|
| 1537 | result[0] = true; |
---|
| 1538 | } catch (Exception ex) { |
---|
| 1539 | println("no"); |
---|
| 1540 | result[0] = false; |
---|
| 1541 | |
---|
| 1542 | if (m_Debug) { |
---|
| 1543 | println("\n=== Full Report ==="); |
---|
| 1544 | print("Problem during"); |
---|
| 1545 | if (built) { |
---|
| 1546 | print(" testing"); |
---|
| 1547 | } else { |
---|
| 1548 | print(" training"); |
---|
| 1549 | } |
---|
| 1550 | println(": " + ex.getMessage() + "\n"); |
---|
| 1551 | println("Here are the datasets:\n"); |
---|
| 1552 | println("=== Train Dataset ===\n" |
---|
| 1553 | + train.toString() + "\n"); |
---|
| 1554 | println("=== Test Dataset ===\n" |
---|
| 1555 | + test.toString() + "\n\n"); |
---|
| 1556 | } |
---|
| 1557 | } |
---|
| 1558 | |
---|
| 1559 | return result; |
---|
| 1560 | } |
---|
| 1561 | |
---|
| 1562 | /** |
---|
| 1563 | * Runs a text on the datasets with the given characteristics. |
---|
| 1564 | * |
---|
| 1565 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1566 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1567 | * @param stringPredictor if true use string predictor attributes |
---|
| 1568 | * @param datePredictor if true use date predictor attributes |
---|
| 1569 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1570 | * @param multiInstance whether multi-instance is needed |
---|
| 1571 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1572 | * @param missingLevel the percentage of missing values |
---|
| 1573 | * @param predictorMissing true if the missing values may be in |
---|
| 1574 | * the predictors |
---|
| 1575 | * @param classMissing true if the missing values may be in the class |
---|
| 1576 | * @param numTrain the number of instances in the training set |
---|
| 1577 | * @param numTest the number of instaces in the test set |
---|
| 1578 | * @param numClasses the number of classes |
---|
| 1579 | * @param accepts the acceptable string in an exception |
---|
| 1580 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1581 | * was acceptable |
---|
| 1582 | */ |
---|
| 1583 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
| 1584 | boolean numericPredictor, |
---|
| 1585 | boolean stringPredictor, |
---|
| 1586 | boolean datePredictor, |
---|
| 1587 | boolean relationalPredictor, |
---|
| 1588 | boolean multiInstance, |
---|
| 1589 | int classType, |
---|
| 1590 | int missingLevel, |
---|
| 1591 | boolean predictorMissing, |
---|
| 1592 | boolean classMissing, |
---|
| 1593 | int numTrain, |
---|
| 1594 | int numTest, |
---|
| 1595 | int numClasses, |
---|
| 1596 | FastVector accepts) { |
---|
| 1597 | |
---|
| 1598 | return runBasicTest( |
---|
| 1599 | nominalPredictor, |
---|
| 1600 | numericPredictor, |
---|
| 1601 | stringPredictor, |
---|
| 1602 | datePredictor, |
---|
| 1603 | relationalPredictor, |
---|
| 1604 | multiInstance, |
---|
| 1605 | classType, |
---|
| 1606 | TestInstances.CLASS_IS_LAST, |
---|
| 1607 | missingLevel, |
---|
| 1608 | predictorMissing, |
---|
| 1609 | classMissing, |
---|
| 1610 | numTrain, |
---|
| 1611 | numTest, |
---|
| 1612 | numClasses, |
---|
| 1613 | accepts); |
---|
| 1614 | } |
---|
| 1615 | |
---|
| 1616 | /** |
---|
| 1617 | * Runs a text on the datasets with the given characteristics. |
---|
| 1618 | * |
---|
| 1619 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1620 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1621 | * @param stringPredictor if true use string predictor attributes |
---|
| 1622 | * @param datePredictor if true use date predictor attributes |
---|
| 1623 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1624 | * @param multiInstance whether multi-instance is needed |
---|
| 1625 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1626 | * @param classIndex the attribute index of the class |
---|
| 1627 | * @param missingLevel the percentage of missing values |
---|
| 1628 | * @param predictorMissing true if the missing values may be in |
---|
| 1629 | * the predictors |
---|
| 1630 | * @param classMissing true if the missing values may be in the class |
---|
| 1631 | * @param numTrain the number of instances in the training set |
---|
| 1632 | * @param numTest the number of instaces in the test set |
---|
| 1633 | * @param numClasses the number of classes |
---|
| 1634 | * @param accepts the acceptable string in an exception |
---|
| 1635 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1636 | * was acceptable |
---|
| 1637 | */ |
---|
| 1638 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
| 1639 | boolean numericPredictor, |
---|
| 1640 | boolean stringPredictor, |
---|
| 1641 | boolean datePredictor, |
---|
| 1642 | boolean relationalPredictor, |
---|
| 1643 | boolean multiInstance, |
---|
| 1644 | int classType, |
---|
| 1645 | int classIndex, |
---|
| 1646 | int missingLevel, |
---|
| 1647 | boolean predictorMissing, |
---|
| 1648 | boolean classMissing, |
---|
| 1649 | int numTrain, |
---|
| 1650 | int numTest, |
---|
| 1651 | int numClasses, |
---|
| 1652 | FastVector accepts) { |
---|
| 1653 | |
---|
| 1654 | boolean[] result = new boolean[2]; |
---|
| 1655 | Instances train = null; |
---|
| 1656 | Instances test = null; |
---|
| 1657 | Classifier classifier = null; |
---|
| 1658 | Evaluation evaluation = null; |
---|
| 1659 | boolean built = false; |
---|
| 1660 | try { |
---|
| 1661 | train = makeTestDataset(42, numTrain, |
---|
| 1662 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1663 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1664 | stringPredictor ? getNumString() : 0, |
---|
| 1665 | datePredictor ? getNumDate() : 0, |
---|
| 1666 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1667 | numClasses, |
---|
| 1668 | classType, |
---|
| 1669 | classIndex, |
---|
| 1670 | multiInstance); |
---|
| 1671 | test = makeTestDataset(24, numTest, |
---|
| 1672 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1673 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1674 | stringPredictor ? getNumString() : 0, |
---|
| 1675 | datePredictor ? getNumDate() : 0, |
---|
| 1676 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1677 | numClasses, |
---|
| 1678 | classType, |
---|
| 1679 | classIndex, |
---|
| 1680 | multiInstance); |
---|
| 1681 | if (missingLevel > 0) { |
---|
| 1682 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1683 | addMissing(test, Math.min(missingLevel, 50), predictorMissing, |
---|
| 1684 | classMissing); |
---|
| 1685 | } |
---|
| 1686 | classifier = AbstractClassifier.makeCopies(getClassifier(), 1)[0]; |
---|
| 1687 | evaluation = new Evaluation(train); |
---|
| 1688 | } catch (Exception ex) { |
---|
| 1689 | ex.printStackTrace(); |
---|
| 1690 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1691 | } |
---|
| 1692 | try { |
---|
| 1693 | classifier.buildClassifier(train); |
---|
| 1694 | built = true; |
---|
| 1695 | if (!testWRTZeroR(classifier, evaluation, train, test)[0]) { |
---|
| 1696 | result[0] = true; |
---|
| 1697 | result[1] = true; |
---|
| 1698 | throw new Exception("Scheme performs worse than ZeroR"); |
---|
| 1699 | } |
---|
| 1700 | |
---|
| 1701 | println("yes"); |
---|
| 1702 | result[0] = true; |
---|
| 1703 | } |
---|
| 1704 | catch (Exception ex) { |
---|
| 1705 | boolean acceptable = false; |
---|
| 1706 | String msg; |
---|
| 1707 | if (ex.getMessage() == null) |
---|
| 1708 | msg = ""; |
---|
| 1709 | else |
---|
| 1710 | msg = ex.getMessage().toLowerCase(); |
---|
| 1711 | if (msg.indexOf("not in classpath") > -1) |
---|
| 1712 | m_ClasspathProblems = true; |
---|
| 1713 | if (msg.indexOf("worse than zeror") >= 0) { |
---|
| 1714 | println("warning: performs worse than ZeroR"); |
---|
| 1715 | result[0] = true; |
---|
| 1716 | result[1] = true; |
---|
| 1717 | } else { |
---|
| 1718 | for (int i = 0; i < accepts.size(); i++) { |
---|
| 1719 | if (msg.indexOf((String)accepts.elementAt(i)) >= 0) { |
---|
| 1720 | acceptable = true; |
---|
| 1721 | } |
---|
| 1722 | } |
---|
| 1723 | |
---|
| 1724 | println("no" + (acceptable ? " (OK error message)" : "")); |
---|
| 1725 | result[1] = acceptable; |
---|
| 1726 | } |
---|
| 1727 | |
---|
| 1728 | if (m_Debug) { |
---|
| 1729 | println("\n=== Full Report ==="); |
---|
| 1730 | print("Problem during"); |
---|
| 1731 | if (built) { |
---|
| 1732 | print(" testing"); |
---|
| 1733 | } else { |
---|
| 1734 | print(" training"); |
---|
| 1735 | } |
---|
| 1736 | println(": " + ex.getMessage() + "\n"); |
---|
| 1737 | if (!acceptable) { |
---|
| 1738 | if (accepts.size() > 0) { |
---|
| 1739 | print("Error message doesn't mention "); |
---|
| 1740 | for (int i = 0; i < accepts.size(); i++) { |
---|
| 1741 | if (i != 0) { |
---|
| 1742 | print(" or "); |
---|
| 1743 | } |
---|
| 1744 | print('"' + (String)accepts.elementAt(i) + '"'); |
---|
| 1745 | } |
---|
| 1746 | } |
---|
| 1747 | println("here are the datasets:\n"); |
---|
| 1748 | println("=== Train Dataset ===\n" |
---|
| 1749 | + train.toString() + "\n"); |
---|
| 1750 | println("=== Test Dataset ===\n" |
---|
| 1751 | + test.toString() + "\n\n"); |
---|
| 1752 | } |
---|
| 1753 | } |
---|
| 1754 | } |
---|
| 1755 | |
---|
| 1756 | return result; |
---|
| 1757 | } |
---|
| 1758 | |
---|
| 1759 | /** |
---|
| 1760 | * Determine whether the scheme performs worse than ZeroR during testing |
---|
| 1761 | * |
---|
| 1762 | * @param classifier the pre-trained classifier |
---|
| 1763 | * @param evaluation the classifier evaluation object |
---|
| 1764 | * @param train the training data |
---|
| 1765 | * @param test the test data |
---|
| 1766 | * @return index 0 is true if the scheme performs better than ZeroR |
---|
| 1767 | * @throws Exception if there was a problem during the scheme's testing |
---|
| 1768 | */ |
---|
| 1769 | protected boolean[] testWRTZeroR(Classifier classifier, |
---|
| 1770 | Evaluation evaluation, |
---|
| 1771 | Instances train, Instances test) |
---|
| 1772 | throws Exception { |
---|
| 1773 | |
---|
| 1774 | boolean[] result = new boolean[2]; |
---|
| 1775 | |
---|
| 1776 | evaluation.evaluateModel(classifier, test); |
---|
| 1777 | try { |
---|
| 1778 | |
---|
| 1779 | // Tested OK, compare with ZeroR |
---|
| 1780 | Classifier zeroR = new weka.classifiers.rules.ZeroR(); |
---|
| 1781 | zeroR.buildClassifier(train); |
---|
| 1782 | Evaluation zeroREval = new Evaluation(train); |
---|
| 1783 | zeroREval.evaluateModel(zeroR, test); |
---|
| 1784 | result[0] = Utils.grOrEq(zeroREval.errorRate(), evaluation.errorRate()); |
---|
| 1785 | } |
---|
| 1786 | catch (Exception ex) { |
---|
| 1787 | throw new Error("Problem determining ZeroR performance: " |
---|
| 1788 | + ex.getMessage()); |
---|
| 1789 | } |
---|
| 1790 | |
---|
| 1791 | return result; |
---|
| 1792 | } |
---|
| 1793 | |
---|
| 1794 | /** |
---|
| 1795 | * Make a simple set of instances, which can later be modified |
---|
| 1796 | * for use in specific tests. |
---|
| 1797 | * |
---|
| 1798 | * @param seed the random number seed |
---|
| 1799 | * @param numInstances the number of instances to generate |
---|
| 1800 | * @param numNominal the number of nominal attributes |
---|
| 1801 | * @param numNumeric the number of numeric attributes |
---|
| 1802 | * @param numString the number of string attributes |
---|
| 1803 | * @param numDate the number of date attributes |
---|
| 1804 | * @param numRelational the number of relational attributes |
---|
| 1805 | * @param numClasses the number of classes (if nominal class) |
---|
| 1806 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1807 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
| 1808 | * @return the test dataset |
---|
| 1809 | * @throws Exception if the dataset couldn't be generated |
---|
| 1810 | * @see #process(Instances) |
---|
| 1811 | */ |
---|
| 1812 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
| 1813 | int numNominal, int numNumeric, |
---|
| 1814 | int numString, int numDate, |
---|
| 1815 | int numRelational, |
---|
| 1816 | int numClasses, int classType, |
---|
| 1817 | boolean multiInstance) |
---|
| 1818 | throws Exception { |
---|
| 1819 | |
---|
| 1820 | return makeTestDataset( |
---|
| 1821 | seed, |
---|
| 1822 | numInstances, |
---|
| 1823 | numNominal, |
---|
| 1824 | numNumeric, |
---|
| 1825 | numString, |
---|
| 1826 | numDate, |
---|
| 1827 | numRelational, |
---|
| 1828 | numClasses, |
---|
| 1829 | classType, |
---|
| 1830 | TestInstances.CLASS_IS_LAST, |
---|
| 1831 | multiInstance); |
---|
| 1832 | } |
---|
| 1833 | |
---|
| 1834 | /** |
---|
| 1835 | * Make a simple set of instances with variable position of the class |
---|
| 1836 | * attribute, which can later be modified for use in specific tests. |
---|
| 1837 | * |
---|
| 1838 | * @param seed the random number seed |
---|
| 1839 | * @param numInstances the number of instances to generate |
---|
| 1840 | * @param numNominal the number of nominal attributes |
---|
| 1841 | * @param numNumeric the number of numeric attributes |
---|
| 1842 | * @param numString the number of string attributes |
---|
| 1843 | * @param numDate the number of date attributes |
---|
| 1844 | * @param numRelational the number of relational attributes |
---|
| 1845 | * @param numClasses the number of classes (if nominal class) |
---|
| 1846 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1847 | * @param classIndex the index of the class (0-based, -1 as last) |
---|
| 1848 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
| 1849 | * @return the test dataset |
---|
| 1850 | * @throws Exception if the dataset couldn't be generated |
---|
| 1851 | * @see TestInstances#CLASS_IS_LAST |
---|
| 1852 | * @see #process(Instances) |
---|
| 1853 | */ |
---|
| 1854 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
| 1855 | int numNominal, int numNumeric, |
---|
| 1856 | int numString, int numDate, |
---|
| 1857 | int numRelational, |
---|
| 1858 | int numClasses, int classType, |
---|
| 1859 | int classIndex, |
---|
| 1860 | boolean multiInstance) |
---|
| 1861 | throws Exception { |
---|
| 1862 | |
---|
| 1863 | TestInstances dataset = new TestInstances(); |
---|
| 1864 | |
---|
| 1865 | dataset.setSeed(seed); |
---|
| 1866 | dataset.setNumInstances(numInstances); |
---|
| 1867 | dataset.setNumNominal(numNominal); |
---|
| 1868 | dataset.setNumNumeric(numNumeric); |
---|
| 1869 | dataset.setNumString(numString); |
---|
| 1870 | dataset.setNumDate(numDate); |
---|
| 1871 | dataset.setNumRelational(numRelational); |
---|
| 1872 | dataset.setNumClasses(numClasses); |
---|
| 1873 | dataset.setClassType(classType); |
---|
| 1874 | dataset.setClassIndex(classIndex); |
---|
| 1875 | dataset.setNumClasses(numClasses); |
---|
| 1876 | dataset.setMultiInstance(multiInstance); |
---|
| 1877 | dataset.setWords(getWords()); |
---|
| 1878 | dataset.setWordSeparators(getWordSeparators()); |
---|
| 1879 | |
---|
| 1880 | return process(dataset.generate()); |
---|
| 1881 | } |
---|
| 1882 | |
---|
| 1883 | /** |
---|
| 1884 | * Print out a short summary string for the dataset characteristics |
---|
| 1885 | * |
---|
| 1886 | * @param nominalPredictor true if nominal predictor attributes are present |
---|
| 1887 | * @param numericPredictor true if numeric predictor attributes are present |
---|
| 1888 | * @param stringPredictor true if string predictor attributes are present |
---|
| 1889 | * @param datePredictor true if date predictor attributes are present |
---|
| 1890 | * @param relationalPredictor true if relational predictor attributes are present |
---|
| 1891 | * @param multiInstance whether multi-instance is needed |
---|
| 1892 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1893 | */ |
---|
| 1894 | protected void printAttributeSummary(boolean nominalPredictor, |
---|
| 1895 | boolean numericPredictor, |
---|
| 1896 | boolean stringPredictor, |
---|
| 1897 | boolean datePredictor, |
---|
| 1898 | boolean relationalPredictor, |
---|
| 1899 | boolean multiInstance, |
---|
| 1900 | int classType) { |
---|
| 1901 | |
---|
| 1902 | String str = ""; |
---|
| 1903 | |
---|
| 1904 | if (numericPredictor) |
---|
| 1905 | str += " numeric"; |
---|
| 1906 | |
---|
| 1907 | if (nominalPredictor) { |
---|
| 1908 | if (str.length() > 0) |
---|
| 1909 | str += " &"; |
---|
| 1910 | str += " nominal"; |
---|
| 1911 | } |
---|
| 1912 | |
---|
| 1913 | if (stringPredictor) { |
---|
| 1914 | if (str.length() > 0) |
---|
| 1915 | str += " &"; |
---|
| 1916 | str += " string"; |
---|
| 1917 | } |
---|
| 1918 | |
---|
| 1919 | if (datePredictor) { |
---|
| 1920 | if (str.length() > 0) |
---|
| 1921 | str += " &"; |
---|
| 1922 | str += " date"; |
---|
| 1923 | } |
---|
| 1924 | |
---|
| 1925 | if (relationalPredictor) { |
---|
| 1926 | if (str.length() > 0) |
---|
| 1927 | str += " &"; |
---|
| 1928 | str += " relational"; |
---|
| 1929 | } |
---|
| 1930 | |
---|
| 1931 | str += " predictors)"; |
---|
| 1932 | |
---|
| 1933 | switch (classType) { |
---|
| 1934 | case Attribute.NUMERIC: |
---|
| 1935 | str = " (numeric class," + str; |
---|
| 1936 | break; |
---|
| 1937 | case Attribute.NOMINAL: |
---|
| 1938 | str = " (nominal class," + str; |
---|
| 1939 | break; |
---|
| 1940 | case Attribute.STRING: |
---|
| 1941 | str = " (string class," + str; |
---|
| 1942 | break; |
---|
| 1943 | case Attribute.DATE: |
---|
| 1944 | str = " (date class," + str; |
---|
| 1945 | break; |
---|
| 1946 | case Attribute.RELATIONAL: |
---|
| 1947 | str = " (relational class," + str; |
---|
| 1948 | break; |
---|
| 1949 | } |
---|
| 1950 | |
---|
| 1951 | print(str); |
---|
| 1952 | } |
---|
| 1953 | |
---|
| 1954 | /** |
---|
| 1955 | * Returns the revision string. |
---|
| 1956 | * |
---|
| 1957 | * @return the revision |
---|
| 1958 | */ |
---|
| 1959 | public String getRevision() { |
---|
| 1960 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
| 1961 | } |
---|
| 1962 | |
---|
| 1963 | /** |
---|
| 1964 | * Test method for this class |
---|
| 1965 | * |
---|
| 1966 | * @param args the commandline parameters |
---|
| 1967 | */ |
---|
| 1968 | public static void main(String [] args) { |
---|
| 1969 | runCheck(new CheckClassifier(), args); |
---|
| 1970 | } |
---|
| 1971 | } |
---|