1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * BVDecomposeSegCVSub.java |
---|
19 | * Copyright (C) 2003 Paul Conilione |
---|
20 | * |
---|
21 | * Based on the class: BVDecompose.java by Len Trigg (1999) |
---|
22 | */ |
---|
23 | |
---|
24 | |
---|
25 | /* |
---|
26 | * DEDICATION |
---|
27 | * |
---|
28 | * Paul Conilione would like to express his deep gratitude and appreciation |
---|
29 | * to his Chinese Buddhist Taoist Master Sifu Chow Yuk Nen for the abilities |
---|
30 | * and insight that he has been taught, which have allowed him to program in |
---|
31 | * a clear and efficient manner. |
---|
32 | * |
---|
33 | * Master Sifu Chow Yuk Nen's Teachings are unique and precious. They are |
---|
34 | * applicable to any field of human endeavour. Through his unique and powerful |
---|
35 | * ability to skilfully apply Chinese Buddhist Teachings, people have achieved |
---|
36 | * success in; Computing, chemical engineering, business, accounting, philosophy |
---|
37 | * and more. |
---|
38 | * |
---|
39 | */ |
---|
40 | |
---|
41 | package weka.classifiers; |
---|
42 | |
---|
43 | import weka.core.Attribute; |
---|
44 | import weka.core.Instance; |
---|
45 | import weka.core.Instances; |
---|
46 | import weka.core.Option; |
---|
47 | import weka.core.OptionHandler; |
---|
48 | import weka.core.RevisionHandler; |
---|
49 | import weka.core.RevisionUtils; |
---|
50 | import weka.core.TechnicalInformation; |
---|
51 | import weka.core.TechnicalInformationHandler; |
---|
52 | import weka.core.Utils; |
---|
53 | import weka.core.TechnicalInformation.Field; |
---|
54 | import weka.core.TechnicalInformation.Type; |
---|
55 | |
---|
56 | import java.io.BufferedReader; |
---|
57 | import java.io.FileReader; |
---|
58 | import java.io.Reader; |
---|
59 | import java.util.Enumeration; |
---|
60 | import java.util.Random; |
---|
61 | import java.util.Vector; |
---|
62 | |
---|
63 | /** |
---|
64 | <!-- globalinfo-start --> |
---|
65 | * This class performs Bias-Variance decomposion on any classifier using the sub-sampled cross-validation procedure as specified in (1).<br/> |
---|
66 | * The Kohavi and Wolpert definition of bias and variance is specified in (2).<br/> |
---|
67 | * The Webb definition of bias and variance is specified in (3).<br/> |
---|
68 | * <br/> |
---|
69 | * Geoffrey I. Webb, Paul Conilione (2002). Estimating bias and variance from data. School of Computer Science and Software Engineering, Victoria, Australia.<br/> |
---|
70 | * <br/> |
---|
71 | * Ron Kohavi, David H. Wolpert: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Machine Learning: Proceedings of the Thirteenth International Conference, 275-283, 1996.<br/> |
---|
72 | * <br/> |
---|
73 | * Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. 40(2):159-196. |
---|
74 | * <p/> |
---|
75 | <!-- globalinfo-end --> |
---|
76 | * |
---|
77 | <!-- technical-bibtex-start --> |
---|
78 | * BibTeX: |
---|
79 | * <pre> |
---|
80 | * @misc{Webb2002, |
---|
81 | * address = {School of Computer Science and Software Engineering, Victoria, Australia}, |
---|
82 | * author = {Geoffrey I. Webb and Paul Conilione}, |
---|
83 | * institution = {Monash University}, |
---|
84 | * title = {Estimating bias and variance from data}, |
---|
85 | * year = {2002}, |
---|
86 | * PDF = {http://www.csse.monash.edu.au/\~webb/Files/WebbConilione04.pdf} |
---|
87 | * } |
---|
88 | * |
---|
89 | * @inproceedings{Kohavi1996, |
---|
90 | * author = {Ron Kohavi and David H. Wolpert}, |
---|
91 | * booktitle = {Machine Learning: Proceedings of the Thirteenth International Conference}, |
---|
92 | * editor = {Lorenza Saitta}, |
---|
93 | * pages = {275-283}, |
---|
94 | * publisher = {Morgan Kaufmann}, |
---|
95 | * title = {Bias Plus Variance Decomposition for Zero-One Loss Functions}, |
---|
96 | * year = {1996}, |
---|
97 | * PS = {http://robotics.stanford.edu/\~ronnyk/biasVar.ps} |
---|
98 | * } |
---|
99 | * |
---|
100 | * @article{Webb2000, |
---|
101 | * author = {Geoffrey I. Webb}, |
---|
102 | * journal = {Machine Learning}, |
---|
103 | * number = {2}, |
---|
104 | * pages = {159-196}, |
---|
105 | * title = {MultiBoosting: A Technique for Combining Boosting and Wagging}, |
---|
106 | * volume = {40}, |
---|
107 | * year = {2000} |
---|
108 | * } |
---|
109 | * </pre> |
---|
110 | * <p/> |
---|
111 | <!-- technical-bibtex-end --> |
---|
112 | * |
---|
113 | <!-- options-start --> |
---|
114 | * Valid options are: <p/> |
---|
115 | * |
---|
116 | * <pre> -c <class index> |
---|
117 | * The index of the class attribute. |
---|
118 | * (default last)</pre> |
---|
119 | * |
---|
120 | * <pre> -D |
---|
121 | * Turn on debugging output.</pre> |
---|
122 | * |
---|
123 | * <pre> -l <num> |
---|
124 | * The number of times each instance is classified. |
---|
125 | * (default 10)</pre> |
---|
126 | * |
---|
127 | * <pre> -p <proportion of objects in common> |
---|
128 | * The average proportion of instances common between any two training sets</pre> |
---|
129 | * |
---|
130 | * <pre> -s <seed> |
---|
131 | * The random number seed used.</pre> |
---|
132 | * |
---|
133 | * <pre> -t <name of arff file> |
---|
134 | * The name of the arff file used for the decomposition.</pre> |
---|
135 | * |
---|
136 | * <pre> -T <number of instances in training set> |
---|
137 | * The number of instances in the training set.</pre> |
---|
138 | * |
---|
139 | * <pre> -W <classifier class name> |
---|
140 | * Full class name of the learner used in the decomposition. |
---|
141 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
142 | * |
---|
143 | * <pre> |
---|
144 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
145 | * </pre> |
---|
146 | * |
---|
147 | * <pre> -D |
---|
148 | * If set, classifier is run in debug mode and |
---|
149 | * may output additional info to the console</pre> |
---|
150 | * |
---|
151 | <!-- options-end --> |
---|
152 | * |
---|
153 | * Options after -- are passed to the designated sub-learner. <p> |
---|
154 | * |
---|
155 | * @author Paul Conilione (paulc4321@yahoo.com.au) |
---|
156 | * @version $Revision: 6041 $ |
---|
157 | */ |
---|
158 | public class BVDecomposeSegCVSub |
---|
159 | implements OptionHandler, TechnicalInformationHandler, RevisionHandler { |
---|
160 | |
---|
161 | /** Debugging mode, gives extra output if true. */ |
---|
162 | protected boolean m_Debug; |
---|
163 | |
---|
164 | /** An instantiated base classifier used for getting and testing options. */ |
---|
165 | protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
166 | |
---|
167 | /** The options to be passed to the base classifier. */ |
---|
168 | protected String [] m_ClassifierOptions; |
---|
169 | |
---|
170 | /** The number of times an instance is classified*/ |
---|
171 | protected int m_ClassifyIterations; |
---|
172 | |
---|
173 | /** The name of the data file used for the decomposition */ |
---|
174 | protected String m_DataFileName; |
---|
175 | |
---|
176 | /** The index of the class attribute */ |
---|
177 | protected int m_ClassIndex = -1; |
---|
178 | |
---|
179 | /** The random number seed */ |
---|
180 | protected int m_Seed = 1; |
---|
181 | |
---|
182 | /** The calculated Kohavi & Wolpert bias (squared) */ |
---|
183 | protected double m_KWBias; |
---|
184 | |
---|
185 | /** The calculated Kohavi & Wolpert variance */ |
---|
186 | protected double m_KWVariance; |
---|
187 | |
---|
188 | /** The calculated Kohavi & Wolpert sigma */ |
---|
189 | protected double m_KWSigma; |
---|
190 | |
---|
191 | /** The calculated Webb bias */ |
---|
192 | protected double m_WBias; |
---|
193 | |
---|
194 | /** The calculated Webb variance */ |
---|
195 | protected double m_WVariance; |
---|
196 | |
---|
197 | /** The error rate */ |
---|
198 | protected double m_Error; |
---|
199 | |
---|
200 | /** The training set size */ |
---|
201 | protected int m_TrainSize; |
---|
202 | |
---|
203 | /** Proportion of instances common between any two training sets. */ |
---|
204 | protected double m_P; |
---|
205 | |
---|
206 | /** |
---|
207 | * Returns a string describing this object |
---|
208 | * @return a description of the classifier suitable for |
---|
209 | * displaying in the explorer/experimenter gui |
---|
210 | */ |
---|
211 | public String globalInfo() { |
---|
212 | return |
---|
213 | "This class performs Bias-Variance decomposion on any classifier using the " |
---|
214 | + "sub-sampled cross-validation procedure as specified in (1).\n" |
---|
215 | + "The Kohavi and Wolpert definition of bias and variance is specified in (2).\n" |
---|
216 | + "The Webb definition of bias and variance is specified in (3).\n\n" |
---|
217 | + getTechnicalInformation().toString(); |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Returns an instance of a TechnicalInformation object, containing |
---|
222 | * detailed information about the technical background of this class, |
---|
223 | * e.g., paper reference or book this class is based on. |
---|
224 | * |
---|
225 | * @return the technical information about this class |
---|
226 | */ |
---|
227 | public TechnicalInformation getTechnicalInformation() { |
---|
228 | TechnicalInformation result; |
---|
229 | TechnicalInformation additional; |
---|
230 | |
---|
231 | result = new TechnicalInformation(Type.MISC); |
---|
232 | result.setValue(Field.AUTHOR, "Geoffrey I. Webb and Paul Conilione"); |
---|
233 | result.setValue(Field.YEAR, "2002"); |
---|
234 | result.setValue(Field.TITLE, "Estimating bias and variance from data"); |
---|
235 | result.setValue(Field.INSTITUTION, "Monash University"); |
---|
236 | result.setValue(Field.ADDRESS, "School of Computer Science and Software Engineering, Victoria, Australia"); |
---|
237 | result.setValue(Field.PDF, "http://www.csse.monash.edu.au/~webb/Files/WebbConilione04.pdf"); |
---|
238 | |
---|
239 | additional = result.add(Type.INPROCEEDINGS); |
---|
240 | additional.setValue(Field.AUTHOR, "Ron Kohavi and David H. Wolpert"); |
---|
241 | additional.setValue(Field.YEAR, "1996"); |
---|
242 | additional.setValue(Field.TITLE, "Bias Plus Variance Decomposition for Zero-One Loss Functions"); |
---|
243 | additional.setValue(Field.BOOKTITLE, "Machine Learning: Proceedings of the Thirteenth International Conference"); |
---|
244 | additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
245 | additional.setValue(Field.EDITOR, "Lorenza Saitta"); |
---|
246 | additional.setValue(Field.PAGES, "275-283"); |
---|
247 | additional.setValue(Field.PS, "http://robotics.stanford.edu/~ronnyk/biasVar.ps"); |
---|
248 | |
---|
249 | additional = result.add(Type.ARTICLE); |
---|
250 | additional.setValue(Field.AUTHOR, "Geoffrey I. Webb"); |
---|
251 | additional.setValue(Field.YEAR, "2000"); |
---|
252 | additional.setValue(Field.TITLE, "MultiBoosting: A Technique for Combining Boosting and Wagging"); |
---|
253 | additional.setValue(Field.JOURNAL, "Machine Learning"); |
---|
254 | additional.setValue(Field.VOLUME, "40"); |
---|
255 | additional.setValue(Field.NUMBER, "2"); |
---|
256 | additional.setValue(Field.PAGES, "159-196"); |
---|
257 | |
---|
258 | return result; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Returns an enumeration describing the available options. |
---|
263 | * |
---|
264 | * @return an enumeration of all the available options. |
---|
265 | */ |
---|
266 | public Enumeration listOptions() { |
---|
267 | |
---|
268 | Vector newVector = new Vector(8); |
---|
269 | |
---|
270 | newVector.addElement(new Option( |
---|
271 | "\tThe index of the class attribute.\n"+ |
---|
272 | "\t(default last)", |
---|
273 | "c", 1, "-c <class index>")); |
---|
274 | newVector.addElement(new Option( |
---|
275 | "\tTurn on debugging output.", |
---|
276 | "D", 0, "-D")); |
---|
277 | newVector.addElement(new Option( |
---|
278 | "\tThe number of times each instance is classified.\n" |
---|
279 | +"\t(default 10)", |
---|
280 | "l", 1, "-l <num>")); |
---|
281 | newVector.addElement(new Option( |
---|
282 | "\tThe average proportion of instances common between any two training sets", |
---|
283 | "p", 1, "-p <proportion of objects in common>")); |
---|
284 | newVector.addElement(new Option( |
---|
285 | "\tThe random number seed used.", |
---|
286 | "s", 1, "-s <seed>")); |
---|
287 | newVector.addElement(new Option( |
---|
288 | "\tThe name of the arff file used for the decomposition.", |
---|
289 | "t", 1, "-t <name of arff file>")); |
---|
290 | newVector.addElement(new Option( |
---|
291 | "\tThe number of instances in the training set.", |
---|
292 | "T", 1, "-T <number of instances in training set>")); |
---|
293 | newVector.addElement(new Option( |
---|
294 | "\tFull class name of the learner used in the decomposition.\n" |
---|
295 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
296 | "W", 1, "-W <classifier class name>")); |
---|
297 | |
---|
298 | if ((m_Classifier != null) && |
---|
299 | (m_Classifier instanceof OptionHandler)) { |
---|
300 | newVector.addElement(new Option( |
---|
301 | "", |
---|
302 | "", 0, "\nOptions specific to learner " |
---|
303 | + m_Classifier.getClass().getName() |
---|
304 | + ":")); |
---|
305 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
306 | while (enu.hasMoreElements()) { |
---|
307 | newVector.addElement(enu.nextElement()); |
---|
308 | } |
---|
309 | } |
---|
310 | return newVector.elements(); |
---|
311 | } |
---|
312 | |
---|
313 | |
---|
314 | /** |
---|
315 | * Sets the OptionHandler's options using the given list. All options |
---|
316 | * will be set (or reset) during this call (i.e. incremental setting |
---|
317 | * of options is not possible). <p/> |
---|
318 | * |
---|
319 | <!-- options-start --> |
---|
320 | * Valid options are: <p/> |
---|
321 | * |
---|
322 | * <pre> -c <class index> |
---|
323 | * The index of the class attribute. |
---|
324 | * (default last)</pre> |
---|
325 | * |
---|
326 | * <pre> -D |
---|
327 | * Turn on debugging output.</pre> |
---|
328 | * |
---|
329 | * <pre> -l <num> |
---|
330 | * The number of times each instance is classified. |
---|
331 | * (default 10)</pre> |
---|
332 | * |
---|
333 | * <pre> -p <proportion of objects in common> |
---|
334 | * The average proportion of instances common between any two training sets</pre> |
---|
335 | * |
---|
336 | * <pre> -s <seed> |
---|
337 | * The random number seed used.</pre> |
---|
338 | * |
---|
339 | * <pre> -t <name of arff file> |
---|
340 | * The name of the arff file used for the decomposition.</pre> |
---|
341 | * |
---|
342 | * <pre> -T <number of instances in training set> |
---|
343 | * The number of instances in the training set.</pre> |
---|
344 | * |
---|
345 | * <pre> -W <classifier class name> |
---|
346 | * Full class name of the learner used in the decomposition. |
---|
347 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
348 | * |
---|
349 | * <pre> |
---|
350 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
351 | * </pre> |
---|
352 | * |
---|
353 | * <pre> -D |
---|
354 | * If set, classifier is run in debug mode and |
---|
355 | * may output additional info to the console</pre> |
---|
356 | * |
---|
357 | <!-- options-end --> |
---|
358 | * |
---|
359 | * @param options the list of options as an array of strings |
---|
360 | * @throws Exception if an option is not supported |
---|
361 | */ |
---|
362 | public void setOptions(String[] options) throws Exception { |
---|
363 | setDebug(Utils.getFlag('D', options)); |
---|
364 | |
---|
365 | String classIndex = Utils.getOption('c', options); |
---|
366 | if (classIndex.length() != 0) { |
---|
367 | if (classIndex.toLowerCase().equals("last")) { |
---|
368 | setClassIndex(0); |
---|
369 | } else if (classIndex.toLowerCase().equals("first")) { |
---|
370 | setClassIndex(1); |
---|
371 | } else { |
---|
372 | setClassIndex(Integer.parseInt(classIndex)); |
---|
373 | } |
---|
374 | } else { |
---|
375 | setClassIndex(0); |
---|
376 | } |
---|
377 | |
---|
378 | String classifyIterations = Utils.getOption('l', options); |
---|
379 | if (classifyIterations.length() != 0) { |
---|
380 | setClassifyIterations(Integer.parseInt(classifyIterations)); |
---|
381 | } else { |
---|
382 | setClassifyIterations(10); |
---|
383 | } |
---|
384 | |
---|
385 | String prob = Utils.getOption('p', options); |
---|
386 | if (prob.length() != 0) { |
---|
387 | setP( Double.parseDouble(prob)); |
---|
388 | } else { |
---|
389 | setP(-1); |
---|
390 | } |
---|
391 | //throw new Exception("A proportion must be specified" + " with a -p option."); |
---|
392 | |
---|
393 | String seedString = Utils.getOption('s', options); |
---|
394 | if (seedString.length() != 0) { |
---|
395 | setSeed(Integer.parseInt(seedString)); |
---|
396 | } else { |
---|
397 | setSeed(1); |
---|
398 | } |
---|
399 | |
---|
400 | String dataFile = Utils.getOption('t', options); |
---|
401 | if (dataFile.length() != 0) { |
---|
402 | setDataFileName(dataFile); |
---|
403 | } else { |
---|
404 | throw new Exception("An arff file must be specified" |
---|
405 | + " with the -t option."); |
---|
406 | } |
---|
407 | |
---|
408 | String trainSize = Utils.getOption('T', options); |
---|
409 | if (trainSize.length() != 0) { |
---|
410 | setTrainSize(Integer.parseInt(trainSize)); |
---|
411 | } else { |
---|
412 | setTrainSize(-1); |
---|
413 | } |
---|
414 | //throw new Exception("A training set size must be specified" + " with a -T option."); |
---|
415 | |
---|
416 | String classifierName = Utils.getOption('W', options); |
---|
417 | if (classifierName.length() != 0) { |
---|
418 | setClassifier(AbstractClassifier.forName(classifierName, Utils.partitionOptions(options))); |
---|
419 | } else { |
---|
420 | throw new Exception("A learner must be specified with the -W option."); |
---|
421 | } |
---|
422 | } |
---|
423 | |
---|
424 | /** |
---|
425 | * Gets the current settings of the CheckClassifier. |
---|
426 | * |
---|
427 | * @return an array of strings suitable for passing to setOptions |
---|
428 | */ |
---|
429 | public String [] getOptions() { |
---|
430 | |
---|
431 | String [] classifierOptions = new String [0]; |
---|
432 | if ((m_Classifier != null) && |
---|
433 | (m_Classifier instanceof OptionHandler)) { |
---|
434 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
435 | } |
---|
436 | String [] options = new String [classifierOptions.length + 14]; |
---|
437 | int current = 0; |
---|
438 | if (getDebug()) { |
---|
439 | options[current++] = "-D"; |
---|
440 | } |
---|
441 | options[current++] = "-c"; options[current++] = "" + getClassIndex(); |
---|
442 | options[current++] = "-l"; options[current++] = "" + getClassifyIterations(); |
---|
443 | options[current++] = "-p"; options[current++] = "" + getP(); |
---|
444 | options[current++] = "-s"; options[current++] = "" + getSeed(); |
---|
445 | if (getDataFileName() != null) { |
---|
446 | options[current++] = "-t"; options[current++] = "" + getDataFileName(); |
---|
447 | } |
---|
448 | options[current++] = "-T"; options[current++] = "" + getTrainSize(); |
---|
449 | if (getClassifier() != null) { |
---|
450 | options[current++] = "-W"; |
---|
451 | options[current++] = getClassifier().getClass().getName(); |
---|
452 | } |
---|
453 | |
---|
454 | options[current++] = "--"; |
---|
455 | System.arraycopy(classifierOptions, 0, options, current, |
---|
456 | classifierOptions.length); |
---|
457 | current += classifierOptions.length; |
---|
458 | while (current < options.length) { |
---|
459 | options[current++] = ""; |
---|
460 | } |
---|
461 | return options; |
---|
462 | } |
---|
463 | |
---|
464 | /** |
---|
465 | * Set the classifiers being analysed |
---|
466 | * |
---|
467 | * @param newClassifier the Classifier to use. |
---|
468 | */ |
---|
469 | public void setClassifier(Classifier newClassifier) { |
---|
470 | |
---|
471 | m_Classifier = newClassifier; |
---|
472 | } |
---|
473 | |
---|
474 | /** |
---|
475 | * Gets the name of the classifier being analysed |
---|
476 | * |
---|
477 | * @return the classifier being analysed. |
---|
478 | */ |
---|
479 | public Classifier getClassifier() { |
---|
480 | |
---|
481 | return m_Classifier; |
---|
482 | } |
---|
483 | |
---|
484 | /** |
---|
485 | * Sets debugging mode |
---|
486 | * |
---|
487 | * @param debug true if debug output should be printed |
---|
488 | */ |
---|
489 | public void setDebug(boolean debug) { |
---|
490 | |
---|
491 | m_Debug = debug; |
---|
492 | } |
---|
493 | |
---|
494 | /** |
---|
495 | * Gets whether debugging is turned on |
---|
496 | * |
---|
497 | * @return true if debugging output is on |
---|
498 | */ |
---|
499 | public boolean getDebug() { |
---|
500 | |
---|
501 | return m_Debug; |
---|
502 | } |
---|
503 | |
---|
504 | |
---|
505 | /** |
---|
506 | * Sets the random number seed |
---|
507 | * |
---|
508 | * @param seed the random number seed |
---|
509 | */ |
---|
510 | public void setSeed(int seed) { |
---|
511 | |
---|
512 | m_Seed = seed; |
---|
513 | } |
---|
514 | |
---|
515 | /** |
---|
516 | * Gets the random number seed |
---|
517 | * |
---|
518 | * @return the random number seed |
---|
519 | */ |
---|
520 | public int getSeed() { |
---|
521 | |
---|
522 | return m_Seed; |
---|
523 | } |
---|
524 | |
---|
525 | /** |
---|
526 | * Sets the number of times an instance is classified |
---|
527 | * |
---|
528 | * @param classifyIterations number of times an instance is classified |
---|
529 | */ |
---|
530 | public void setClassifyIterations(int classifyIterations) { |
---|
531 | |
---|
532 | m_ClassifyIterations = classifyIterations; |
---|
533 | } |
---|
534 | |
---|
535 | /** |
---|
536 | * Gets the number of times an instance is classified |
---|
537 | * |
---|
538 | * @return the maximum number of times an instance is classified |
---|
539 | */ |
---|
540 | public int getClassifyIterations() { |
---|
541 | |
---|
542 | return m_ClassifyIterations; |
---|
543 | } |
---|
544 | |
---|
545 | /** |
---|
546 | * Sets the name of the dataset file. |
---|
547 | * |
---|
548 | * @param dataFileName name of dataset file. |
---|
549 | */ |
---|
550 | public void setDataFileName(String dataFileName) { |
---|
551 | |
---|
552 | m_DataFileName = dataFileName; |
---|
553 | } |
---|
554 | |
---|
555 | /** |
---|
556 | * Get the name of the data file used for the decomposition |
---|
557 | * |
---|
558 | * @return the name of the data file |
---|
559 | */ |
---|
560 | public String getDataFileName() { |
---|
561 | |
---|
562 | return m_DataFileName; |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * Get the index (starting from 1) of the attribute used as the class. |
---|
567 | * |
---|
568 | * @return the index of the class attribute |
---|
569 | */ |
---|
570 | public int getClassIndex() { |
---|
571 | |
---|
572 | return m_ClassIndex + 1; |
---|
573 | } |
---|
574 | |
---|
575 | /** |
---|
576 | * Sets index of attribute to discretize on |
---|
577 | * |
---|
578 | * @param classIndex the index (starting from 1) of the class attribute |
---|
579 | */ |
---|
580 | public void setClassIndex(int classIndex) { |
---|
581 | |
---|
582 | m_ClassIndex = classIndex - 1; |
---|
583 | } |
---|
584 | |
---|
585 | /** |
---|
586 | * Get the calculated bias squared according to the Kohavi and Wolpert definition |
---|
587 | * |
---|
588 | * @return the bias squared |
---|
589 | */ |
---|
590 | public double getKWBias() { |
---|
591 | |
---|
592 | return m_KWBias; |
---|
593 | } |
---|
594 | |
---|
595 | /** |
---|
596 | * Get the calculated bias according to the Webb definition |
---|
597 | * |
---|
598 | * @return the bias |
---|
599 | * |
---|
600 | */ |
---|
601 | public double getWBias() { |
---|
602 | |
---|
603 | return m_WBias; |
---|
604 | } |
---|
605 | |
---|
606 | |
---|
607 | /** |
---|
608 | * Get the calculated variance according to the Kohavi and Wolpert definition |
---|
609 | * |
---|
610 | * @return the variance |
---|
611 | */ |
---|
612 | public double getKWVariance() { |
---|
613 | |
---|
614 | return m_KWVariance; |
---|
615 | } |
---|
616 | |
---|
617 | /** |
---|
618 | * Get the calculated variance according to the Webb definition |
---|
619 | * |
---|
620 | * @return the variance according to Webb |
---|
621 | * |
---|
622 | */ |
---|
623 | public double getWVariance() { |
---|
624 | |
---|
625 | return m_WVariance; |
---|
626 | } |
---|
627 | |
---|
628 | /** |
---|
629 | * Get the calculated sigma according to the Kohavi and Wolpert definition |
---|
630 | * |
---|
631 | * @return the sigma |
---|
632 | * |
---|
633 | */ |
---|
634 | public double getKWSigma() { |
---|
635 | |
---|
636 | return m_KWSigma; |
---|
637 | } |
---|
638 | |
---|
639 | /** |
---|
640 | * Set the training size. |
---|
641 | * |
---|
642 | * @param size the size of the training set |
---|
643 | * |
---|
644 | */ |
---|
645 | public void setTrainSize(int size) { |
---|
646 | |
---|
647 | m_TrainSize = size; |
---|
648 | } |
---|
649 | |
---|
650 | /** |
---|
651 | * Get the training size |
---|
652 | * |
---|
653 | * @return the size of the training set |
---|
654 | * |
---|
655 | */ |
---|
656 | public int getTrainSize() { |
---|
657 | |
---|
658 | return m_TrainSize; |
---|
659 | } |
---|
660 | |
---|
661 | /** |
---|
662 | * Set the proportion of instances that are common between two training sets |
---|
663 | * used to train a classifier. |
---|
664 | * |
---|
665 | * @param proportion the proportion of instances that are common between training |
---|
666 | * sets. |
---|
667 | * |
---|
668 | */ |
---|
669 | public void setP(double proportion) { |
---|
670 | |
---|
671 | m_P = proportion; |
---|
672 | } |
---|
673 | |
---|
674 | /** |
---|
675 | * Get the proportion of instances that are common between two training sets. |
---|
676 | * |
---|
677 | * @return the proportion |
---|
678 | * |
---|
679 | */ |
---|
680 | public double getP() { |
---|
681 | |
---|
682 | return m_P; |
---|
683 | } |
---|
684 | |
---|
685 | /** |
---|
686 | * Get the calculated error rate |
---|
687 | * |
---|
688 | * @return the error rate |
---|
689 | */ |
---|
690 | public double getError() { |
---|
691 | |
---|
692 | return m_Error; |
---|
693 | } |
---|
694 | |
---|
695 | /** |
---|
696 | * Carry out the bias-variance decomposition using the sub-sampled cross-validation method. |
---|
697 | * |
---|
698 | * @throws Exception if the decomposition couldn't be carried out |
---|
699 | */ |
---|
700 | public void decompose() throws Exception { |
---|
701 | |
---|
702 | Reader dataReader; |
---|
703 | Instances data; |
---|
704 | |
---|
705 | int tps; // training pool size, size of segment E. |
---|
706 | int k; // number of folds in segment E. |
---|
707 | int q; // number of segments of size tps. |
---|
708 | |
---|
709 | dataReader = new BufferedReader(new FileReader(m_DataFileName)); //open file |
---|
710 | data = new Instances(dataReader); // encapsulate in wrapper class called weka.Instances() |
---|
711 | |
---|
712 | if (m_ClassIndex < 0) { |
---|
713 | data.setClassIndex(data.numAttributes() - 1); |
---|
714 | } else { |
---|
715 | data.setClassIndex(m_ClassIndex); |
---|
716 | } |
---|
717 | |
---|
718 | if (data.classAttribute().type() != Attribute.NOMINAL) { |
---|
719 | throw new Exception("Class attribute must be nominal"); |
---|
720 | } |
---|
721 | int numClasses = data.numClasses(); |
---|
722 | |
---|
723 | data.deleteWithMissingClass(); |
---|
724 | if ( data.checkForStringAttributes() ) { |
---|
725 | throw new Exception("Can't handle string attributes!"); |
---|
726 | } |
---|
727 | |
---|
728 | // Dataset size must be greater than 2 |
---|
729 | if ( data.numInstances() <= 2 ){ |
---|
730 | throw new Exception("Dataset size must be greater than 2."); |
---|
731 | } |
---|
732 | |
---|
733 | if ( m_TrainSize == -1 ){ // default value |
---|
734 | m_TrainSize = (int) Math.floor( (double) data.numInstances() / 2.0 ); |
---|
735 | }else if ( m_TrainSize < 0 || m_TrainSize >= data.numInstances() - 1 ) { // Check if 0 < training Size < D - 1 |
---|
736 | throw new Exception("Training set size of "+m_TrainSize+" is invalid."); |
---|
737 | } |
---|
738 | |
---|
739 | if ( m_P == -1 ){ // default value |
---|
740 | m_P = (double) m_TrainSize / ( (double)data.numInstances() - 1 ); |
---|
741 | }else if ( m_P < ( m_TrainSize / ( (double)data.numInstances() - 1 ) ) || m_P >= 1.0 ) { //Check if p is in range: m/(|D|-1) <= p < 1.0 |
---|
742 | throw new Exception("Proportion is not in range: "+ (m_TrainSize / ((double) data.numInstances() - 1 )) +" <= p < 1.0 "); |
---|
743 | } |
---|
744 | |
---|
745 | //roundup tps from double to integer |
---|
746 | tps = (int) Math.ceil( ((double)m_TrainSize / (double)m_P) + 1 ); |
---|
747 | k = (int) Math.ceil( tps / (tps - (double) m_TrainSize)); |
---|
748 | |
---|
749 | // number of folds cannot be more than the number of instances in the training pool |
---|
750 | if ( k > tps ) { |
---|
751 | throw new Exception("The required number of folds is too many." |
---|
752 | + "Change p or the size of the training set."); |
---|
753 | } |
---|
754 | |
---|
755 | // calculate the number of segments, round down. |
---|
756 | q = (int) Math.floor( (double) data.numInstances() / (double)tps ); |
---|
757 | |
---|
758 | //create confusion matrix, columns = number of instances in data set, as all will be used, by rows = number of classes. |
---|
759 | double [][] instanceProbs = new double [data.numInstances()][numClasses]; |
---|
760 | int [][] foldIndex = new int [ k ][ 2 ]; |
---|
761 | Vector segmentList = new Vector(q + 1); |
---|
762 | |
---|
763 | //Set random seed |
---|
764 | Random random = new Random(m_Seed); |
---|
765 | |
---|
766 | data.randomize(random); |
---|
767 | |
---|
768 | //create index arrays for different segments |
---|
769 | |
---|
770 | int currentDataIndex = 0; |
---|
771 | |
---|
772 | for( int count = 1; count <= (q + 1); count++ ){ |
---|
773 | if( count > q){ |
---|
774 | int [] segmentIndex = new int [ (data.numInstances() - (q * tps)) ]; |
---|
775 | for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ |
---|
776 | |
---|
777 | segmentIndex[index] = currentDataIndex; |
---|
778 | } |
---|
779 | segmentList.add(segmentIndex); |
---|
780 | } else { |
---|
781 | int [] segmentIndex = new int [ tps ]; |
---|
782 | |
---|
783 | for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ |
---|
784 | segmentIndex[index] = currentDataIndex; |
---|
785 | } |
---|
786 | segmentList.add(segmentIndex); |
---|
787 | } |
---|
788 | } |
---|
789 | |
---|
790 | int remainder = tps % k; // remainder is used to determine when to shrink the fold size by 1. |
---|
791 | |
---|
792 | //foldSize = ROUNDUP( tps / k ) (round up, eg 3 -> 3, 3.3->4) |
---|
793 | int foldSize = (int) Math.ceil( (double)tps /(double) k); //roundup fold size double to integer |
---|
794 | int index = 0; |
---|
795 | int currentIndex; |
---|
796 | |
---|
797 | for( int count = 0; count < k; count ++){ |
---|
798 | if( remainder != 0 && count == remainder ){ |
---|
799 | foldSize -= 1; |
---|
800 | } |
---|
801 | foldIndex[count][0] = index; |
---|
802 | foldIndex[count][1] = foldSize; |
---|
803 | index += foldSize; |
---|
804 | } |
---|
805 | |
---|
806 | for( int l = 0; l < m_ClassifyIterations; l++) { |
---|
807 | |
---|
808 | for(int i = 1; i <= q; i++){ |
---|
809 | |
---|
810 | int [] currentSegment = (int[]) segmentList.get(i - 1); |
---|
811 | |
---|
812 | randomize(currentSegment, random); |
---|
813 | |
---|
814 | //CROSS FOLD VALIDATION for current Segment |
---|
815 | for( int j = 1; j <= k; j++){ |
---|
816 | |
---|
817 | Instances TP = null; |
---|
818 | for(int foldNum = 1; foldNum <= k; foldNum++){ |
---|
819 | if( foldNum != j){ |
---|
820 | |
---|
821 | int startFoldIndex = foldIndex[ foldNum - 1 ][ 0 ]; //start index |
---|
822 | foldSize = foldIndex[ foldNum - 1 ][ 1 ]; |
---|
823 | int endFoldIndex = startFoldIndex + foldSize - 1; |
---|
824 | |
---|
825 | for(int currentFoldIndex = startFoldIndex; currentFoldIndex <= endFoldIndex; currentFoldIndex++){ |
---|
826 | |
---|
827 | if( TP == null ){ |
---|
828 | TP = new Instances(data, currentSegment[ currentFoldIndex ], 1); |
---|
829 | }else{ |
---|
830 | TP.add( data.instance( currentSegment[ currentFoldIndex ] ) ); |
---|
831 | } |
---|
832 | } |
---|
833 | } |
---|
834 | } |
---|
835 | |
---|
836 | TP.randomize(random); |
---|
837 | |
---|
838 | if( getTrainSize() > TP.numInstances() ){ |
---|
839 | throw new Exception("The training set size of " + getTrainSize() + ", is greater than the training pool " |
---|
840 | + TP.numInstances() ); |
---|
841 | } |
---|
842 | |
---|
843 | Instances train = new Instances(TP, 0, m_TrainSize); |
---|
844 | |
---|
845 | Classifier current = AbstractClassifier.makeCopy(m_Classifier); |
---|
846 | current.buildClassifier(train); // create a clssifier using the instances in train. |
---|
847 | |
---|
848 | int currentTestIndex = foldIndex[ j - 1 ][ 0 ]; //start index |
---|
849 | int testFoldSize = foldIndex[ j - 1 ][ 1 ]; //size |
---|
850 | int endTestIndex = currentTestIndex + testFoldSize - 1; |
---|
851 | |
---|
852 | while( currentTestIndex <= endTestIndex ){ |
---|
853 | |
---|
854 | Instance testInst = data.instance( currentSegment[currentTestIndex] ); |
---|
855 | int pred = (int)current.classifyInstance( testInst ); |
---|
856 | |
---|
857 | |
---|
858 | if(pred != testInst.classValue()) { |
---|
859 | m_Error++; // add 1 to mis-classifications. |
---|
860 | } |
---|
861 | instanceProbs[ currentSegment[ currentTestIndex ] ][ pred ]++; |
---|
862 | currentTestIndex++; |
---|
863 | } |
---|
864 | |
---|
865 | if( i == 1 && j == 1){ |
---|
866 | int[] segmentElast = (int[])segmentList.lastElement(); |
---|
867 | for( currentIndex = 0; currentIndex < segmentElast.length; currentIndex++){ |
---|
868 | Instance testInst = data.instance( segmentElast[currentIndex] ); |
---|
869 | int pred = (int)current.classifyInstance( testInst ); |
---|
870 | if(pred != testInst.classValue()) { |
---|
871 | m_Error++; // add 1 to mis-classifications. |
---|
872 | } |
---|
873 | |
---|
874 | instanceProbs[ segmentElast[ currentIndex ] ][ pred ]++; |
---|
875 | } |
---|
876 | } |
---|
877 | } |
---|
878 | } |
---|
879 | } |
---|
880 | |
---|
881 | m_Error /= (double)( m_ClassifyIterations * data.numInstances() ); |
---|
882 | |
---|
883 | m_KWBias = 0.0; |
---|
884 | m_KWVariance = 0.0; |
---|
885 | m_KWSigma = 0.0; |
---|
886 | |
---|
887 | m_WBias = 0.0; |
---|
888 | m_WVariance = 0.0; |
---|
889 | |
---|
890 | for (int i = 0; i < data.numInstances(); i++) { |
---|
891 | |
---|
892 | Instance current = data.instance( i ); |
---|
893 | |
---|
894 | double [] predProbs = instanceProbs[ i ]; |
---|
895 | double pActual, pPred; |
---|
896 | double bsum = 0, vsum = 0, ssum = 0; |
---|
897 | double wBSum = 0, wVSum = 0; |
---|
898 | |
---|
899 | Vector centralTendencies = findCentralTendencies( predProbs ); |
---|
900 | |
---|
901 | if( centralTendencies == null ){ |
---|
902 | throw new Exception("Central tendency was null."); |
---|
903 | } |
---|
904 | |
---|
905 | for (int j = 0; j < numClasses; j++) { |
---|
906 | pActual = (current.classValue() == j) ? 1 : 0; |
---|
907 | pPred = predProbs[j] / m_ClassifyIterations; |
---|
908 | bsum += (pActual - pPred) * (pActual - pPred) - pPred * (1 - pPred) / (m_ClassifyIterations - 1); |
---|
909 | vsum += pPred * pPred; |
---|
910 | ssum += pActual * pActual; |
---|
911 | } |
---|
912 | |
---|
913 | m_KWBias += bsum; |
---|
914 | m_KWVariance += (1 - vsum); |
---|
915 | m_KWSigma += (1 - ssum); |
---|
916 | |
---|
917 | for( int count = 0; count < centralTendencies.size(); count++ ) { |
---|
918 | |
---|
919 | int wB = 0, wV = 0; |
---|
920 | int centralTendency = ((Integer)centralTendencies.get(count)).intValue(); |
---|
921 | |
---|
922 | // For a single instance xi, find the bias and variance. |
---|
923 | for (int j = 0; j < numClasses; j++) { |
---|
924 | |
---|
925 | //Webb definition |
---|
926 | if( j != (int)current.classValue() && j == centralTendency ) { |
---|
927 | wB += predProbs[j]; |
---|
928 | } |
---|
929 | if( j != (int)current.classValue() && j != centralTendency ) { |
---|
930 | wV += predProbs[j]; |
---|
931 | } |
---|
932 | |
---|
933 | } |
---|
934 | wBSum += (double) wB; |
---|
935 | wVSum += (double) wV; |
---|
936 | } |
---|
937 | |
---|
938 | // calculate bais by dividing bSum by the number of central tendencies and |
---|
939 | // total number of instances. (effectively finding the average and dividing |
---|
940 | // by the number of instances to get the nominalised probability). |
---|
941 | |
---|
942 | m_WBias += ( wBSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); |
---|
943 | // calculate variance by dividing vSum by the total number of interations |
---|
944 | m_WVariance += ( wVSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); |
---|
945 | |
---|
946 | } |
---|
947 | |
---|
948 | m_KWBias /= (2.0 * (double) data.numInstances()); |
---|
949 | m_KWVariance /= (2.0 * (double) data.numInstances()); |
---|
950 | m_KWSigma /= (2.0 * (double) data.numInstances()); |
---|
951 | |
---|
952 | // bias = bias / number of data instances |
---|
953 | m_WBias /= (double) data.numInstances(); |
---|
954 | // variance = variance / number of data instances. |
---|
955 | m_WVariance /= (double) data.numInstances(); |
---|
956 | |
---|
957 | if (m_Debug) { |
---|
958 | System.err.println("Decomposition finished"); |
---|
959 | } |
---|
960 | |
---|
961 | } |
---|
962 | |
---|
963 | /** Finds the central tendency, given the classifications for an instance. |
---|
964 | * |
---|
965 | * Where the central tendency is defined as the class that was most commonly |
---|
966 | * selected for a given instance.<p> |
---|
967 | * |
---|
968 | * For example, instance 'x' may be classified out of 3 classes y = {1, 2, 3}, |
---|
969 | * so if x is classified 10 times, and is classified as follows, '1' = 2 times, '2' = 5 times |
---|
970 | * and '3' = 3 times. Then the central tendency is '2'. <p> |
---|
971 | * |
---|
972 | * However, it is important to note that this method returns a list of all classes |
---|
973 | * that have the highest number of classifications. |
---|
974 | * |
---|
975 | * In cases where there are several classes with the largest number of classifications, then |
---|
976 | * all of these classes are returned. For example if 'x' is classified '1' = 4 times, |
---|
977 | * '2' = 4 times and '3' = 2 times. Then '1' and '2' are returned.<p> |
---|
978 | * |
---|
979 | * @param predProbs the array of classifications for a single instance. |
---|
980 | * |
---|
981 | * @return a Vector containing Integer objects which store the class(s) which |
---|
982 | * are the central tendency. |
---|
983 | */ |
---|
984 | public Vector findCentralTendencies(double[] predProbs) { |
---|
985 | |
---|
986 | int centralTValue = 0; |
---|
987 | int currentValue = 0; |
---|
988 | //array to store the list of classes the have the greatest number of classifictions. |
---|
989 | Vector centralTClasses; |
---|
990 | |
---|
991 | centralTClasses = new Vector(); //create an array with size of the number of classes. |
---|
992 | |
---|
993 | // Go through array, finding the central tendency. |
---|
994 | for( int i = 0; i < predProbs.length; i++) { |
---|
995 | currentValue = (int) predProbs[i]; |
---|
996 | // if current value is greater than the central tendency value then |
---|
997 | // clear vector and add new class to vector array. |
---|
998 | if( currentValue > centralTValue) { |
---|
999 | centralTClasses.clear(); |
---|
1000 | centralTClasses.addElement( new Integer(i) ); |
---|
1001 | centralTValue = currentValue; |
---|
1002 | } else if( currentValue != 0 && currentValue == centralTValue) { |
---|
1003 | centralTClasses.addElement( new Integer(i) ); |
---|
1004 | } |
---|
1005 | } |
---|
1006 | //return all classes that have the greatest number of classifications. |
---|
1007 | if( centralTValue != 0){ |
---|
1008 | return centralTClasses; |
---|
1009 | } else { |
---|
1010 | return null; |
---|
1011 | } |
---|
1012 | |
---|
1013 | } |
---|
1014 | |
---|
1015 | /** |
---|
1016 | * Returns description of the bias-variance decomposition results. |
---|
1017 | * |
---|
1018 | * @return the bias-variance decomposition results as a string |
---|
1019 | */ |
---|
1020 | public String toString() { |
---|
1021 | |
---|
1022 | String result = "\nBias-Variance Decomposition Segmentation, Cross Validation\n" + |
---|
1023 | "with subsampling.\n"; |
---|
1024 | |
---|
1025 | if (getClassifier() == null) { |
---|
1026 | return "Invalid setup"; |
---|
1027 | } |
---|
1028 | |
---|
1029 | result += "\nClassifier : " + getClassifier().getClass().getName(); |
---|
1030 | if (getClassifier() instanceof OptionHandler) { |
---|
1031 | result += Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()); |
---|
1032 | } |
---|
1033 | result += "\nData File : " + getDataFileName(); |
---|
1034 | result += "\nClass Index : "; |
---|
1035 | if (getClassIndex() == 0) { |
---|
1036 | result += "last"; |
---|
1037 | } else { |
---|
1038 | result += getClassIndex(); |
---|
1039 | } |
---|
1040 | result += "\nIterations : " + getClassifyIterations(); |
---|
1041 | result += "\np : " + getP(); |
---|
1042 | result += "\nTraining Size : " + getTrainSize(); |
---|
1043 | result += "\nSeed : " + getSeed(); |
---|
1044 | |
---|
1045 | result += "\n\nDefinition : " +"Kohavi and Wolpert"; |
---|
1046 | result += "\nError :" + Utils.doubleToString(getError(), 4); |
---|
1047 | result += "\nBias^2 :" + Utils.doubleToString(getKWBias(), 4); |
---|
1048 | result += "\nVariance :" + Utils.doubleToString(getKWVariance(), 4); |
---|
1049 | result += "\nSigma^2 :" + Utils.doubleToString(getKWSigma(), 4); |
---|
1050 | |
---|
1051 | result += "\n\nDefinition : " +"Webb"; |
---|
1052 | result += "\nError :" + Utils.doubleToString(getError(), 4); |
---|
1053 | result += "\nBias :" + Utils.doubleToString(getWBias(), 4); |
---|
1054 | result += "\nVariance :" + Utils.doubleToString(getWVariance(), 4); |
---|
1055 | |
---|
1056 | return result; |
---|
1057 | } |
---|
1058 | |
---|
1059 | /** |
---|
1060 | * Returns the revision string. |
---|
1061 | * |
---|
1062 | * @return the revision |
---|
1063 | */ |
---|
1064 | public String getRevision() { |
---|
1065 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
1066 | } |
---|
1067 | |
---|
1068 | /** |
---|
1069 | * Test method for this class |
---|
1070 | * |
---|
1071 | * @param args the command line arguments |
---|
1072 | */ |
---|
1073 | public static void main(String [] args) { |
---|
1074 | |
---|
1075 | try { |
---|
1076 | BVDecomposeSegCVSub bvd = new BVDecomposeSegCVSub(); |
---|
1077 | |
---|
1078 | try { |
---|
1079 | bvd.setOptions(args); |
---|
1080 | Utils.checkForRemainingOptions(args); |
---|
1081 | } catch (Exception ex) { |
---|
1082 | String result = ex.getMessage() + "\nBVDecompose Options:\n\n"; |
---|
1083 | Enumeration enu = bvd.listOptions(); |
---|
1084 | while (enu.hasMoreElements()) { |
---|
1085 | Option option = (Option) enu.nextElement(); |
---|
1086 | result += option.synopsis() + "\n" + option.description() + "\n"; |
---|
1087 | } |
---|
1088 | throw new Exception(result); |
---|
1089 | } |
---|
1090 | |
---|
1091 | bvd.decompose(); |
---|
1092 | |
---|
1093 | System.out.println(bvd.toString()); |
---|
1094 | |
---|
1095 | } catch (Exception ex) { |
---|
1096 | System.err.println(ex.getMessage()); |
---|
1097 | } |
---|
1098 | |
---|
1099 | } |
---|
1100 | |
---|
1101 | /** |
---|
1102 | * Accepts an array of ints and randomises the values in the array, using the |
---|
1103 | * random seed. |
---|
1104 | * |
---|
1105 | *@param index is the array of integers |
---|
1106 | *@param random is the Random seed. |
---|
1107 | */ |
---|
1108 | public final void randomize(int[] index, Random random) { |
---|
1109 | for( int j = index.length - 1; j > 0; j-- ){ |
---|
1110 | int k = random.nextInt( j + 1 ); |
---|
1111 | int temp = index[j]; |
---|
1112 | index[j] = index[k]; |
---|
1113 | index[k] = temp; |
---|
1114 | } |
---|
1115 | } |
---|
1116 | } |
---|