[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * BVDecompose.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.Option; |
---|
| 29 | import weka.core.OptionHandler; |
---|
| 30 | import weka.core.RevisionHandler; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.TechnicalInformation; |
---|
| 33 | import weka.core.TechnicalInformationHandler; |
---|
| 34 | import weka.core.Utils; |
---|
| 35 | import weka.core.TechnicalInformation.Field; |
---|
| 36 | import weka.core.TechnicalInformation.Type; |
---|
| 37 | |
---|
| 38 | import java.io.BufferedReader; |
---|
| 39 | import java.io.FileReader; |
---|
| 40 | import java.io.Reader; |
---|
| 41 | import java.util.Enumeration; |
---|
| 42 | import java.util.Random; |
---|
| 43 | import java.util.Vector; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | <!-- globalinfo-start --> |
---|
| 47 | * Class for performing a Bias-Variance decomposition on any classifier using the method specified in:<br/> |
---|
| 48 | * <br/> |
---|
| 49 | * Ron Kohavi, David H. Wolpert: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Machine Learning: Proceedings of the Thirteenth International Conference, 275-283, 1996. |
---|
| 50 | * <p/> |
---|
| 51 | <!-- globalinfo-end --> |
---|
| 52 | * |
---|
| 53 | <!-- technical-bibtex-start --> |
---|
| 54 | * BibTeX: |
---|
| 55 | * <pre> |
---|
| 56 | * @inproceedings{Kohavi1996, |
---|
| 57 | * author = {Ron Kohavi and David H. Wolpert}, |
---|
| 58 | * booktitle = {Machine Learning: Proceedings of the Thirteenth International Conference}, |
---|
| 59 | * editor = {Lorenza Saitta}, |
---|
| 60 | * pages = {275-283}, |
---|
| 61 | * publisher = {Morgan Kaufmann}, |
---|
| 62 | * title = {Bias Plus Variance Decomposition for Zero-One Loss Functions}, |
---|
| 63 | * year = {1996}, |
---|
| 64 | * PS = {http://robotics.stanford.edu/\~ronnyk/biasVar.ps} |
---|
| 65 | * } |
---|
| 66 | * </pre> |
---|
| 67 | * <p/> |
---|
| 68 | <!-- technical-bibtex-end --> |
---|
| 69 | * |
---|
| 70 | <!-- options-start --> |
---|
| 71 | * Valid options are: <p/> |
---|
| 72 | * |
---|
| 73 | * <pre> -c <class index> |
---|
| 74 | * The index of the class attribute. |
---|
| 75 | * (default last)</pre> |
---|
| 76 | * |
---|
| 77 | * <pre> -t <name of arff file> |
---|
| 78 | * The name of the arff file used for the decomposition.</pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -T <training pool size> |
---|
| 81 | * The number of instances placed in the training pool. |
---|
| 82 | * The remainder will be used for testing. (default 100)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -s <seed> |
---|
| 85 | * The random number seed used.</pre> |
---|
| 86 | * |
---|
| 87 | * <pre> -x <num> |
---|
| 88 | * The number of training repetitions used. |
---|
| 89 | * (default 50)</pre> |
---|
| 90 | * |
---|
| 91 | * <pre> -D |
---|
| 92 | * Turn on debugging output.</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -W <classifier class name> |
---|
| 95 | * Full class name of the learner used in the decomposition. |
---|
| 96 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 97 | * |
---|
| 98 | * <pre> |
---|
| 99 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
| 100 | * </pre> |
---|
| 101 | * |
---|
| 102 | * <pre> -D |
---|
| 103 | * If set, classifier is run in debug mode and |
---|
| 104 | * may output additional info to the console</pre> |
---|
| 105 | * |
---|
| 106 | <!-- options-end --> |
---|
| 107 | * |
---|
| 108 | * Options after -- are passed to the designated sub-learner. <p> |
---|
| 109 | * |
---|
| 110 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 111 | * @version $Revision: 6041 $ |
---|
| 112 | */ |
---|
| 113 | public class BVDecompose |
---|
| 114 | implements OptionHandler, TechnicalInformationHandler, RevisionHandler { |
---|
| 115 | |
---|
| 116 | /** Debugging mode, gives extra output if true */ |
---|
| 117 | protected boolean m_Debug; |
---|
| 118 | |
---|
| 119 | /** An instantiated base classifier used for getting and testing options. */ |
---|
| 120 | protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
| 121 | |
---|
| 122 | /** The options to be passed to the base classifier. */ |
---|
| 123 | protected String [] m_ClassifierOptions; |
---|
| 124 | |
---|
| 125 | /** The number of train iterations */ |
---|
| 126 | protected int m_TrainIterations = 50; |
---|
| 127 | |
---|
| 128 | /** The name of the data file used for the decomposition */ |
---|
| 129 | protected String m_DataFileName; |
---|
| 130 | |
---|
| 131 | /** The index of the class attribute */ |
---|
| 132 | protected int m_ClassIndex = -1; |
---|
| 133 | |
---|
| 134 | /** The random number seed */ |
---|
| 135 | protected int m_Seed = 1; |
---|
| 136 | |
---|
| 137 | /** The calculated bias (squared) */ |
---|
| 138 | protected double m_Bias; |
---|
| 139 | |
---|
| 140 | /** The calculated variance */ |
---|
| 141 | protected double m_Variance; |
---|
| 142 | |
---|
| 143 | /** The calculated sigma (squared) */ |
---|
| 144 | protected double m_Sigma; |
---|
| 145 | |
---|
| 146 | /** The error rate */ |
---|
| 147 | protected double m_Error; |
---|
| 148 | |
---|
| 149 | /** The number of instances used in the training pool */ |
---|
| 150 | protected int m_TrainPoolSize = 100; |
---|
| 151 | |
---|
| 152 | /** |
---|
| 153 | * Returns a string describing this object |
---|
| 154 | * @return a description of the classifier suitable for |
---|
| 155 | * displaying in the explorer/experimenter gui |
---|
| 156 | */ |
---|
| 157 | public String globalInfo() { |
---|
| 158 | |
---|
| 159 | return |
---|
| 160 | "Class for performing a Bias-Variance decomposition on any classifier " |
---|
| 161 | + "using the method specified in:\n\n" |
---|
| 162 | + getTechnicalInformation().toString(); |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 167 | * detailed information about the technical background of this class, |
---|
| 168 | * e.g., paper reference or book this class is based on. |
---|
| 169 | * |
---|
| 170 | * @return the technical information about this class |
---|
| 171 | */ |
---|
| 172 | public TechnicalInformation getTechnicalInformation() { |
---|
| 173 | TechnicalInformation result; |
---|
| 174 | |
---|
| 175 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 176 | result.setValue(Field.AUTHOR, "Ron Kohavi and David H. Wolpert"); |
---|
| 177 | result.setValue(Field.YEAR, "1996"); |
---|
| 178 | result.setValue(Field.TITLE, "Bias Plus Variance Decomposition for Zero-One Loss Functions"); |
---|
| 179 | result.setValue(Field.BOOKTITLE, "Machine Learning: Proceedings of the Thirteenth International Conference"); |
---|
| 180 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
| 181 | result.setValue(Field.EDITOR, "Lorenza Saitta"); |
---|
| 182 | result.setValue(Field.PAGES, "275-283"); |
---|
| 183 | result.setValue(Field.PS, "http://robotics.stanford.edu/~ronnyk/biasVar.ps"); |
---|
| 184 | |
---|
| 185 | return result; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Returns an enumeration describing the available options. |
---|
| 190 | * |
---|
| 191 | * @return an enumeration of all the available options. |
---|
| 192 | */ |
---|
| 193 | public Enumeration listOptions() { |
---|
| 194 | |
---|
| 195 | Vector newVector = new Vector(7); |
---|
| 196 | |
---|
| 197 | newVector.addElement(new Option( |
---|
| 198 | "\tThe index of the class attribute.\n"+ |
---|
| 199 | "\t(default last)", |
---|
| 200 | "c", 1, "-c <class index>")); |
---|
| 201 | newVector.addElement(new Option( |
---|
| 202 | "\tThe name of the arff file used for the decomposition.", |
---|
| 203 | "t", 1, "-t <name of arff file>")); |
---|
| 204 | newVector.addElement(new Option( |
---|
| 205 | "\tThe number of instances placed in the training pool.\n" |
---|
| 206 | + "\tThe remainder will be used for testing. (default 100)", |
---|
| 207 | "T", 1, "-T <training pool size>")); |
---|
| 208 | newVector.addElement(new Option( |
---|
| 209 | "\tThe random number seed used.", |
---|
| 210 | "s", 1, "-s <seed>")); |
---|
| 211 | newVector.addElement(new Option( |
---|
| 212 | "\tThe number of training repetitions used.\n" |
---|
| 213 | +"\t(default 50)", |
---|
| 214 | "x", 1, "-x <num>")); |
---|
| 215 | newVector.addElement(new Option( |
---|
| 216 | "\tTurn on debugging output.", |
---|
| 217 | "D", 0, "-D")); |
---|
| 218 | newVector.addElement(new Option( |
---|
| 219 | "\tFull class name of the learner used in the decomposition.\n" |
---|
| 220 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
| 221 | "W", 1, "-W <classifier class name>")); |
---|
| 222 | |
---|
| 223 | if ((m_Classifier != null) && |
---|
| 224 | (m_Classifier instanceof OptionHandler)) { |
---|
| 225 | newVector.addElement(new Option( |
---|
| 226 | "", |
---|
| 227 | "", 0, "\nOptions specific to learner " |
---|
| 228 | + m_Classifier.getClass().getName() |
---|
| 229 | + ":")); |
---|
| 230 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
| 231 | while (enu.hasMoreElements()) { |
---|
| 232 | newVector.addElement(enu.nextElement()); |
---|
| 233 | } |
---|
| 234 | } |
---|
| 235 | return newVector.elements(); |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | * Parses a given list of options. <p/> |
---|
| 240 | * |
---|
| 241 | <!-- options-start --> |
---|
| 242 | * Valid options are: <p/> |
---|
| 243 | * |
---|
| 244 | * <pre> -c <class index> |
---|
| 245 | * The index of the class attribute. |
---|
| 246 | * (default last)</pre> |
---|
| 247 | * |
---|
| 248 | * <pre> -t <name of arff file> |
---|
| 249 | * The name of the arff file used for the decomposition.</pre> |
---|
| 250 | * |
---|
| 251 | * <pre> -T <training pool size> |
---|
| 252 | * The number of instances placed in the training pool. |
---|
| 253 | * The remainder will be used for testing. (default 100)</pre> |
---|
| 254 | * |
---|
| 255 | * <pre> -s <seed> |
---|
| 256 | * The random number seed used.</pre> |
---|
| 257 | * |
---|
| 258 | * <pre> -x <num> |
---|
| 259 | * The number of training repetitions used. |
---|
| 260 | * (default 50)</pre> |
---|
| 261 | * |
---|
| 262 | * <pre> -D |
---|
| 263 | * Turn on debugging output.</pre> |
---|
| 264 | * |
---|
| 265 | * <pre> -W <classifier class name> |
---|
| 266 | * Full class name of the learner used in the decomposition. |
---|
| 267 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 268 | * |
---|
| 269 | * <pre> |
---|
| 270 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
| 271 | * </pre> |
---|
| 272 | * |
---|
| 273 | * <pre> -D |
---|
| 274 | * If set, classifier is run in debug mode and |
---|
| 275 | * may output additional info to the console</pre> |
---|
| 276 | * |
---|
| 277 | <!-- options-end --> |
---|
| 278 | * |
---|
| 279 | * Options after -- are passed to the designated sub-learner. <p> |
---|
| 280 | * |
---|
| 281 | * @param options the list of options as an array of strings |
---|
| 282 | * @throws Exception if an option is not supported |
---|
| 283 | */ |
---|
| 284 | public void setOptions(String[] options) throws Exception { |
---|
| 285 | |
---|
| 286 | setDebug(Utils.getFlag('D', options)); |
---|
| 287 | |
---|
| 288 | String classIndex = Utils.getOption('c', options); |
---|
| 289 | if (classIndex.length() != 0) { |
---|
| 290 | if (classIndex.toLowerCase().equals("last")) { |
---|
| 291 | setClassIndex(0); |
---|
| 292 | } else if (classIndex.toLowerCase().equals("first")) { |
---|
| 293 | setClassIndex(1); |
---|
| 294 | } else { |
---|
| 295 | setClassIndex(Integer.parseInt(classIndex)); |
---|
| 296 | } |
---|
| 297 | } else { |
---|
| 298 | setClassIndex(0); |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | String trainIterations = Utils.getOption('x', options); |
---|
| 302 | if (trainIterations.length() != 0) { |
---|
| 303 | setTrainIterations(Integer.parseInt(trainIterations)); |
---|
| 304 | } else { |
---|
| 305 | setTrainIterations(50); |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | String trainPoolSize = Utils.getOption('T', options); |
---|
| 309 | if (trainPoolSize.length() != 0) { |
---|
| 310 | setTrainPoolSize(Integer.parseInt(trainPoolSize)); |
---|
| 311 | } else { |
---|
| 312 | setTrainPoolSize(100); |
---|
| 313 | } |
---|
| 314 | |
---|
| 315 | String seedString = Utils.getOption('s', options); |
---|
| 316 | if (seedString.length() != 0) { |
---|
| 317 | setSeed(Integer.parseInt(seedString)); |
---|
| 318 | } else { |
---|
| 319 | setSeed(1); |
---|
| 320 | } |
---|
| 321 | |
---|
| 322 | String dataFile = Utils.getOption('t', options); |
---|
| 323 | if (dataFile.length() == 0) { |
---|
| 324 | throw new Exception("An arff file must be specified" |
---|
| 325 | + " with the -t option."); |
---|
| 326 | } |
---|
| 327 | setDataFileName(dataFile); |
---|
| 328 | |
---|
| 329 | String classifierName = Utils.getOption('W', options); |
---|
| 330 | if (classifierName.length() == 0) { |
---|
| 331 | throw new Exception("A learner must be specified with the -W option."); |
---|
| 332 | } |
---|
| 333 | setClassifier(AbstractClassifier.forName(classifierName, |
---|
| 334 | Utils.partitionOptions(options))); |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * Gets the current settings of the CheckClassifier. |
---|
| 339 | * |
---|
| 340 | * @return an array of strings suitable for passing to setOptions |
---|
| 341 | */ |
---|
| 342 | public String [] getOptions() { |
---|
| 343 | |
---|
| 344 | String [] classifierOptions = new String [0]; |
---|
| 345 | if ((m_Classifier != null) && |
---|
| 346 | (m_Classifier instanceof OptionHandler)) { |
---|
| 347 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
| 348 | } |
---|
| 349 | String [] options = new String [classifierOptions.length + 14]; |
---|
| 350 | int current = 0; |
---|
| 351 | if (getDebug()) { |
---|
| 352 | options[current++] = "-D"; |
---|
| 353 | } |
---|
| 354 | options[current++] = "-c"; options[current++] = "" + getClassIndex(); |
---|
| 355 | options[current++] = "-x"; options[current++] = "" + getTrainIterations(); |
---|
| 356 | options[current++] = "-T"; options[current++] = "" + getTrainPoolSize(); |
---|
| 357 | options[current++] = "-s"; options[current++] = "" + getSeed(); |
---|
| 358 | if (getDataFileName() != null) { |
---|
| 359 | options[current++] = "-t"; options[current++] = "" + getDataFileName(); |
---|
| 360 | } |
---|
| 361 | if (getClassifier() != null) { |
---|
| 362 | options[current++] = "-W"; |
---|
| 363 | options[current++] = getClassifier().getClass().getName(); |
---|
| 364 | } |
---|
| 365 | options[current++] = "--"; |
---|
| 366 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 367 | classifierOptions.length); |
---|
| 368 | current += classifierOptions.length; |
---|
| 369 | while (current < options.length) { |
---|
| 370 | options[current++] = ""; |
---|
| 371 | } |
---|
| 372 | return options; |
---|
| 373 | } |
---|
| 374 | |
---|
| 375 | /** |
---|
| 376 | * Get the number of instances in the training pool. |
---|
| 377 | * |
---|
| 378 | * @return number of instances in the training pool. |
---|
| 379 | */ |
---|
| 380 | public int getTrainPoolSize() { |
---|
| 381 | |
---|
| 382 | return m_TrainPoolSize; |
---|
| 383 | } |
---|
| 384 | |
---|
| 385 | /** |
---|
| 386 | * Set the number of instances in the training pool. |
---|
| 387 | * |
---|
| 388 | * @param numTrain number of instances in the training pool. |
---|
| 389 | */ |
---|
| 390 | public void setTrainPoolSize(int numTrain) { |
---|
| 391 | |
---|
| 392 | m_TrainPoolSize = numTrain; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** |
---|
| 396 | * Set the classifiers being analysed |
---|
| 397 | * |
---|
| 398 | * @param newClassifier the Classifier to use. |
---|
| 399 | */ |
---|
| 400 | public void setClassifier(Classifier newClassifier) { |
---|
| 401 | |
---|
| 402 | m_Classifier = newClassifier; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | /** |
---|
| 406 | * Gets the name of the classifier being analysed |
---|
| 407 | * |
---|
| 408 | * @return the classifier being analysed. |
---|
| 409 | */ |
---|
| 410 | public Classifier getClassifier() { |
---|
| 411 | |
---|
| 412 | return m_Classifier; |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | /** |
---|
| 416 | * Sets debugging mode |
---|
| 417 | * |
---|
| 418 | * @param debug true if debug output should be printed |
---|
| 419 | */ |
---|
| 420 | public void setDebug(boolean debug) { |
---|
| 421 | |
---|
| 422 | m_Debug = debug; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | /** |
---|
| 426 | * Gets whether debugging is turned on |
---|
| 427 | * |
---|
| 428 | * @return true if debugging output is on |
---|
| 429 | */ |
---|
| 430 | public boolean getDebug() { |
---|
| 431 | |
---|
| 432 | return m_Debug; |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * Sets the random number seed |
---|
| 437 | * |
---|
| 438 | * @param seed the random number seed |
---|
| 439 | */ |
---|
| 440 | public void setSeed(int seed) { |
---|
| 441 | |
---|
| 442 | m_Seed = seed; |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | /** |
---|
| 446 | * Gets the random number seed |
---|
| 447 | * |
---|
| 448 | * @return the random number seed |
---|
| 449 | */ |
---|
| 450 | public int getSeed() { |
---|
| 451 | |
---|
| 452 | return m_Seed; |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | /** |
---|
| 456 | * Sets the maximum number of boost iterations |
---|
| 457 | * |
---|
| 458 | * @param trainIterations the number of boost iterations |
---|
| 459 | */ |
---|
| 460 | public void setTrainIterations(int trainIterations) { |
---|
| 461 | |
---|
| 462 | m_TrainIterations = trainIterations; |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | /** |
---|
| 466 | * Gets the maximum number of boost iterations |
---|
| 467 | * |
---|
| 468 | * @return the maximum number of boost iterations |
---|
| 469 | */ |
---|
| 470 | public int getTrainIterations() { |
---|
| 471 | |
---|
| 472 | return m_TrainIterations; |
---|
| 473 | } |
---|
| 474 | |
---|
| 475 | /** |
---|
| 476 | * Sets the name of the data file used for the decomposition |
---|
| 477 | * |
---|
| 478 | * @param dataFileName the data file to use |
---|
| 479 | */ |
---|
| 480 | public void setDataFileName(String dataFileName) { |
---|
| 481 | |
---|
| 482 | m_DataFileName = dataFileName; |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Get the name of the data file used for the decomposition |
---|
| 487 | * |
---|
| 488 | * @return the name of the data file |
---|
| 489 | */ |
---|
| 490 | public String getDataFileName() { |
---|
| 491 | |
---|
| 492 | return m_DataFileName; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Get the index (starting from 1) of the attribute used as the class. |
---|
| 497 | * |
---|
| 498 | * @return the index of the class attribute |
---|
| 499 | */ |
---|
| 500 | public int getClassIndex() { |
---|
| 501 | |
---|
| 502 | return m_ClassIndex + 1; |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | /** |
---|
| 506 | * Sets index of attribute to discretize on |
---|
| 507 | * |
---|
| 508 | * @param classIndex the index (starting from 1) of the class attribute |
---|
| 509 | */ |
---|
| 510 | public void setClassIndex(int classIndex) { |
---|
| 511 | |
---|
| 512 | m_ClassIndex = classIndex - 1; |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | /** |
---|
| 516 | * Get the calculated bias squared |
---|
| 517 | * |
---|
| 518 | * @return the bias squared |
---|
| 519 | */ |
---|
| 520 | public double getBias() { |
---|
| 521 | |
---|
| 522 | return m_Bias; |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | /** |
---|
| 526 | * Get the calculated variance |
---|
| 527 | * |
---|
| 528 | * @return the variance |
---|
| 529 | */ |
---|
| 530 | public double getVariance() { |
---|
| 531 | |
---|
| 532 | return m_Variance; |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | /** |
---|
| 536 | * Get the calculated sigma squared |
---|
| 537 | * |
---|
| 538 | * @return the sigma squared |
---|
| 539 | */ |
---|
| 540 | public double getSigma() { |
---|
| 541 | |
---|
| 542 | return m_Sigma; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | /** |
---|
| 546 | * Get the calculated error rate |
---|
| 547 | * |
---|
| 548 | * @return the error rate |
---|
| 549 | */ |
---|
| 550 | public double getError() { |
---|
| 551 | |
---|
| 552 | return m_Error; |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Carry out the bias-variance decomposition |
---|
| 557 | * |
---|
| 558 | * @throws Exception if the decomposition couldn't be carried out |
---|
| 559 | */ |
---|
| 560 | public void decompose() throws Exception { |
---|
| 561 | |
---|
| 562 | Reader dataReader = new BufferedReader(new FileReader(m_DataFileName)); |
---|
| 563 | Instances data = new Instances(dataReader); |
---|
| 564 | |
---|
| 565 | if (m_ClassIndex < 0) { |
---|
| 566 | data.setClassIndex(data.numAttributes() - 1); |
---|
| 567 | } else { |
---|
| 568 | data.setClassIndex(m_ClassIndex); |
---|
| 569 | } |
---|
| 570 | if (data.classAttribute().type() != Attribute.NOMINAL) { |
---|
| 571 | throw new Exception("Class attribute must be nominal"); |
---|
| 572 | } |
---|
| 573 | int numClasses = data.numClasses(); |
---|
| 574 | |
---|
| 575 | data.deleteWithMissingClass(); |
---|
| 576 | if (data.checkForStringAttributes()) { |
---|
| 577 | throw new Exception("Can't handle string attributes!"); |
---|
| 578 | } |
---|
| 579 | |
---|
| 580 | if (data.numInstances() < 2 * m_TrainPoolSize) { |
---|
| 581 | throw new Exception("The dataset must contain at least " |
---|
| 582 | + (2 * m_TrainPoolSize) + " instances"); |
---|
| 583 | } |
---|
| 584 | Random random = new Random(m_Seed); |
---|
| 585 | data.randomize(random); |
---|
| 586 | Instances trainPool = new Instances(data, 0, m_TrainPoolSize); |
---|
| 587 | Instances test = new Instances(data, m_TrainPoolSize, |
---|
| 588 | data.numInstances() - m_TrainPoolSize); |
---|
| 589 | int numTest = test.numInstances(); |
---|
| 590 | double [][] instanceProbs = new double [numTest][numClasses]; |
---|
| 591 | |
---|
| 592 | m_Error = 0; |
---|
| 593 | for (int i = 0; i < m_TrainIterations; i++) { |
---|
| 594 | if (m_Debug) { |
---|
| 595 | System.err.println("Iteration " + (i + 1)); |
---|
| 596 | } |
---|
| 597 | trainPool.randomize(random); |
---|
| 598 | Instances train = new Instances(trainPool, 0, m_TrainPoolSize / 2); |
---|
| 599 | |
---|
| 600 | Classifier current = AbstractClassifier.makeCopy(m_Classifier); |
---|
| 601 | current.buildClassifier(train); |
---|
| 602 | |
---|
| 603 | //// Evaluate the classifier on test, updating BVD stats |
---|
| 604 | for (int j = 0; j < numTest; j++) { |
---|
| 605 | int pred = (int)current.classifyInstance(test.instance(j)); |
---|
| 606 | if (pred != test.instance(j).classValue()) { |
---|
| 607 | m_Error++; |
---|
| 608 | } |
---|
| 609 | instanceProbs[j][pred]++; |
---|
| 610 | } |
---|
| 611 | } |
---|
| 612 | m_Error /= (m_TrainIterations * numTest); |
---|
| 613 | |
---|
| 614 | // Average the BV over each instance in test. |
---|
| 615 | m_Bias = 0; |
---|
| 616 | m_Variance = 0; |
---|
| 617 | m_Sigma = 0; |
---|
| 618 | for (int i = 0; i < numTest; i++) { |
---|
| 619 | Instance current = test.instance(i); |
---|
| 620 | double [] predProbs = instanceProbs[i]; |
---|
| 621 | double pActual, pPred; |
---|
| 622 | double bsum = 0, vsum = 0, ssum = 0; |
---|
| 623 | for (int j = 0; j < numClasses; j++) { |
---|
| 624 | pActual = (current.classValue() == j) ? 1 : 0; // Or via 1NN from test data? |
---|
| 625 | pPred = predProbs[j] / m_TrainIterations; |
---|
| 626 | bsum += (pActual - pPred) * (pActual - pPred) |
---|
| 627 | - pPred * (1 - pPred) / (m_TrainIterations - 1); |
---|
| 628 | vsum += pPred * pPred; |
---|
| 629 | ssum += pActual * pActual; |
---|
| 630 | } |
---|
| 631 | m_Bias += bsum; |
---|
| 632 | m_Variance += (1 - vsum); |
---|
| 633 | m_Sigma += (1 - ssum); |
---|
| 634 | } |
---|
| 635 | m_Bias /= (2 * numTest); |
---|
| 636 | m_Variance /= (2 * numTest); |
---|
| 637 | m_Sigma /= (2 * numTest); |
---|
| 638 | |
---|
| 639 | if (m_Debug) { |
---|
| 640 | System.err.println("Decomposition finished"); |
---|
| 641 | } |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | |
---|
| 645 | /** |
---|
| 646 | * Returns description of the bias-variance decomposition results. |
---|
| 647 | * |
---|
| 648 | * @return the bias-variance decomposition results as a string |
---|
| 649 | */ |
---|
| 650 | public String toString() { |
---|
| 651 | |
---|
| 652 | String result = "\nBias-Variance Decomposition\n"; |
---|
| 653 | |
---|
| 654 | if (getClassifier() == null) { |
---|
| 655 | return "Invalid setup"; |
---|
| 656 | } |
---|
| 657 | |
---|
| 658 | result += "\nClassifier : " + getClassifier().getClass().getName(); |
---|
| 659 | if (getClassifier() instanceof OptionHandler) { |
---|
| 660 | result += Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()); |
---|
| 661 | } |
---|
| 662 | result += "\nData File : " + getDataFileName(); |
---|
| 663 | result += "\nClass Index : "; |
---|
| 664 | if (getClassIndex() == 0) { |
---|
| 665 | result += "last"; |
---|
| 666 | } else { |
---|
| 667 | result += getClassIndex(); |
---|
| 668 | } |
---|
| 669 | result += "\nTraining Pool: " + getTrainPoolSize(); |
---|
| 670 | result += "\nIterations : " + getTrainIterations(); |
---|
| 671 | result += "\nSeed : " + getSeed(); |
---|
| 672 | result += "\nError : " + Utils.doubleToString(getError(), 6, 4); |
---|
| 673 | result += "\nSigma^2 : " + Utils.doubleToString(getSigma(), 6, 4); |
---|
| 674 | result += "\nBias^2 : " + Utils.doubleToString(getBias(), 6, 4); |
---|
| 675 | result += "\nVariance : " + Utils.doubleToString(getVariance(), 6, 4); |
---|
| 676 | |
---|
| 677 | return result + "\n"; |
---|
| 678 | } |
---|
| 679 | |
---|
| 680 | /** |
---|
| 681 | * Returns the revision string. |
---|
| 682 | * |
---|
| 683 | * @return the revision |
---|
| 684 | */ |
---|
| 685 | public String getRevision() { |
---|
| 686 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | /** |
---|
| 690 | * Test method for this class |
---|
| 691 | * |
---|
| 692 | * @param args the command line arguments |
---|
| 693 | */ |
---|
| 694 | public static void main(String [] args) { |
---|
| 695 | |
---|
| 696 | try { |
---|
| 697 | BVDecompose bvd = new BVDecompose(); |
---|
| 698 | |
---|
| 699 | try { |
---|
| 700 | bvd.setOptions(args); |
---|
| 701 | Utils.checkForRemainingOptions(args); |
---|
| 702 | } catch (Exception ex) { |
---|
| 703 | String result = ex.getMessage() + "\nBVDecompose Options:\n\n"; |
---|
| 704 | Enumeration enu = bvd.listOptions(); |
---|
| 705 | while (enu.hasMoreElements()) { |
---|
| 706 | Option option = (Option) enu.nextElement(); |
---|
| 707 | result += option.synopsis() + "\n" + option.description() + "\n"; |
---|
| 708 | } |
---|
| 709 | throw new Exception(result); |
---|
| 710 | } |
---|
| 711 | |
---|
| 712 | bvd.decompose(); |
---|
| 713 | System.out.println(bvd.toString()); |
---|
| 714 | } catch (Exception ex) { |
---|
| 715 | System.err.println(ex.getMessage()); |
---|
| 716 | } |
---|
| 717 | } |
---|
| 718 | } |
---|