[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * WrapperSubsetEval.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Evaluation; |
---|
| 28 | import weka.classifiers.rules.ZeroR; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SelectedTag; |
---|
| 35 | import weka.core.Tag; |
---|
| 36 | import weka.core.TechnicalInformation; |
---|
| 37 | import weka.core.TechnicalInformationHandler; |
---|
| 38 | import weka.core.Utils; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | import weka.core.TechnicalInformation.Field; |
---|
| 41 | import weka.core.TechnicalInformation.Type; |
---|
| 42 | import weka.filters.Filter; |
---|
| 43 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 44 | |
---|
| 45 | import java.util.BitSet; |
---|
| 46 | import java.util.Enumeration; |
---|
| 47 | import java.util.Random; |
---|
| 48 | import java.util.Vector; |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | <!-- globalinfo-start --> |
---|
| 52 | * WrapperSubsetEval:<br/> |
---|
| 53 | * <br/> |
---|
| 54 | * Evaluates attribute sets by using a learning scheme. Cross validation is used to estimate the accuracy of the learning scheme for a set of attributes.<br/> |
---|
| 55 | * <br/> |
---|
| 56 | * For more information see:<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * Ron Kohavi, George H. John (1997). Wrappers for feature subset selection. Artificial Intelligence. 97(1-2):273-324. |
---|
| 59 | * <p/> |
---|
| 60 | <!-- globalinfo-end --> |
---|
| 61 | * |
---|
| 62 | <!-- technical-bibtex-start --> |
---|
| 63 | * BibTeX: |
---|
| 64 | * <pre> |
---|
| 65 | * @article{Kohavi1997, |
---|
| 66 | * author = {Ron Kohavi and George H. John}, |
---|
| 67 | * journal = {Artificial Intelligence}, |
---|
| 68 | * note = {Special issue on relevance}, |
---|
| 69 | * number = {1-2}, |
---|
| 70 | * pages = {273-324}, |
---|
| 71 | * title = {Wrappers for feature subset selection}, |
---|
| 72 | * volume = {97}, |
---|
| 73 | * year = {1997}, |
---|
| 74 | * ISSN = {0004-3702} |
---|
| 75 | * } |
---|
| 76 | * </pre> |
---|
| 77 | * <p/> |
---|
| 78 | <!-- technical-bibtex-end --> |
---|
| 79 | * |
---|
| 80 | <!-- options-start --> |
---|
| 81 | * Valid options are: <p/> |
---|
| 82 | * |
---|
| 83 | * <pre> -B <base learner> |
---|
| 84 | * class name of base learner to use for accuracy estimation. |
---|
| 85 | * Place any classifier options LAST on the command line |
---|
| 86 | * following a "--". eg.: |
---|
| 87 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
| 88 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 89 | * |
---|
| 90 | * <pre> -F <num> |
---|
| 91 | * number of cross validation folds to use for estimating accuracy. |
---|
| 92 | * (default=5)</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -R <seed> |
---|
| 95 | * Seed for cross validation accuracy testimation. |
---|
| 96 | * (default = 1)</pre> |
---|
| 97 | * |
---|
| 98 | * <pre> -T <num> |
---|
| 99 | * threshold by which to execute another cross validation |
---|
| 100 | * (standard deviation---expressed as a percentage of the mean). |
---|
| 101 | * (default: 0.01 (1%))</pre> |
---|
| 102 | * |
---|
| 103 | * <pre> -E <acc | rmse | mae | f-meas | auc> |
---|
| 104 | * Performance evaluation measure to use for selecting attributes. |
---|
| 105 | * (Default = accuracy for discrete class and rmse for numeric class)</pre> |
---|
| 106 | * |
---|
| 107 | * <pre> |
---|
| 108 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
| 109 | * </pre> |
---|
| 110 | * |
---|
| 111 | * <pre> -D |
---|
| 112 | * If set, classifier is run in debug mode and |
---|
| 113 | * may output additional info to the console</pre> |
---|
| 114 | * |
---|
| 115 | <!-- options-end --> |
---|
| 116 | * |
---|
| 117 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 118 | * @version $Revision: 5928 $ |
---|
| 119 | */ |
---|
| 120 | public class WrapperSubsetEval |
---|
| 121 | extends ASEvaluation |
---|
| 122 | implements SubsetEvaluator, |
---|
| 123 | OptionHandler, |
---|
| 124 | TechnicalInformationHandler { |
---|
| 125 | |
---|
| 126 | /** for serialization */ |
---|
| 127 | static final long serialVersionUID = -4573057658746728675L; |
---|
| 128 | |
---|
| 129 | /** training instances */ |
---|
| 130 | private Instances m_trainInstances; |
---|
| 131 | /** class index */ |
---|
| 132 | private int m_classIndex; |
---|
| 133 | /** number of attributes in the training data */ |
---|
| 134 | private int m_numAttribs; |
---|
| 135 | /** number of instances in the training data */ |
---|
| 136 | private int m_numInstances; |
---|
| 137 | /** holds an evaluation object */ |
---|
| 138 | private Evaluation m_Evaluation; |
---|
| 139 | /** holds the base classifier object */ |
---|
| 140 | private Classifier m_BaseClassifier; |
---|
| 141 | /** number of folds to use for cross validation */ |
---|
| 142 | private int m_folds; |
---|
| 143 | /** random number seed */ |
---|
| 144 | private int m_seed; |
---|
| 145 | /** |
---|
| 146 | * the threshold by which to do further cross validations when |
---|
| 147 | * estimating the accuracy of a subset |
---|
| 148 | */ |
---|
| 149 | private double m_threshold; |
---|
| 150 | |
---|
| 151 | public static final int EVAL_DEFAULT = 1; |
---|
| 152 | public static final int EVAL_ACCURACY = 2; |
---|
| 153 | public static final int EVAL_RMSE = 3; |
---|
| 154 | public static final int EVAL_MAE = 4; |
---|
| 155 | public static final int EVAL_FMEASURE = 5; |
---|
| 156 | public static final int EVAL_AUC = 6; |
---|
| 157 | |
---|
| 158 | public static final Tag[] TAGS_EVALUATION = { |
---|
| 159 | new Tag(EVAL_DEFAULT, "Default: accuracy (discrete class); RMSE (numeric class)"), |
---|
| 160 | new Tag(EVAL_ACCURACY, "Accuracy (discrete class only)"), |
---|
| 161 | new Tag(EVAL_RMSE, "RMSE (of the class probabilities for discrete class)"), |
---|
| 162 | new Tag(EVAL_MAE, "MAE (of the class probabilities for discrete class)"), |
---|
| 163 | new Tag(EVAL_FMEASURE, "F-measure (discrete class only)"), |
---|
| 164 | new Tag(EVAL_AUC, "AUC (area under the ROC curve - discrete class only)") |
---|
| 165 | }; |
---|
| 166 | |
---|
| 167 | /** The evaluation measure to use */ |
---|
| 168 | protected int m_evaluationMeasure = EVAL_DEFAULT; |
---|
| 169 | |
---|
| 170 | /** |
---|
| 171 | * Returns a string describing this attribute evaluator |
---|
| 172 | * @return a description of the evaluator suitable for |
---|
| 173 | * displaying in the explorer/experimenter gui |
---|
| 174 | */ |
---|
| 175 | public String globalInfo() { |
---|
| 176 | return "WrapperSubsetEval:\n\n" |
---|
| 177 | +"Evaluates attribute sets by using a learning scheme. Cross " |
---|
| 178 | +"validation is used to estimate the accuracy of the learning " |
---|
| 179 | +"scheme for a set of attributes.\n\n" |
---|
| 180 | + "For more information see:\n\n" |
---|
| 181 | + getTechnicalInformation().toString(); |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | /** |
---|
| 185 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 186 | * detailed information about the technical background of this class, |
---|
| 187 | * e.g., paper reference or book this class is based on. |
---|
| 188 | * |
---|
| 189 | * @return the technical information about this class |
---|
| 190 | */ |
---|
| 191 | public TechnicalInformation getTechnicalInformation() { |
---|
| 192 | TechnicalInformation result; |
---|
| 193 | |
---|
| 194 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 195 | result.setValue(Field.AUTHOR, "Ron Kohavi and George H. John"); |
---|
| 196 | result.setValue(Field.YEAR, "1997"); |
---|
| 197 | result.setValue(Field.TITLE, "Wrappers for feature subset selection"); |
---|
| 198 | result.setValue(Field.JOURNAL, "Artificial Intelligence"); |
---|
| 199 | result.setValue(Field.VOLUME, "97"); |
---|
| 200 | result.setValue(Field.NUMBER, "1-2"); |
---|
| 201 | result.setValue(Field.PAGES, "273-324"); |
---|
| 202 | result.setValue(Field.NOTE, "Special issue on relevance"); |
---|
| 203 | result.setValue(Field.ISSN, "0004-3702"); |
---|
| 204 | |
---|
| 205 | return result; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | /** |
---|
| 209 | * Constructor. Calls restOptions to set default options |
---|
| 210 | **/ |
---|
| 211 | public WrapperSubsetEval () { |
---|
| 212 | resetOptions(); |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | /** |
---|
| 217 | * Returns an enumeration describing the available options. |
---|
| 218 | * @return an enumeration of all the available options. |
---|
| 219 | **/ |
---|
| 220 | public Enumeration listOptions () { |
---|
| 221 | Vector newVector = new Vector(4); |
---|
| 222 | newVector.addElement(new Option( |
---|
| 223 | "\tclass name of base learner to use for \taccuracy estimation.\n" |
---|
| 224 | + "\tPlace any classifier options LAST on the command line\n" |
---|
| 225 | + "\tfollowing a \"--\". eg.:\n" |
---|
| 226 | + "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n" |
---|
| 227 | + "\t(default: weka.classifiers.rules.ZeroR)", |
---|
| 228 | "B", 1, "-B <base learner>")); |
---|
| 229 | |
---|
| 230 | newVector.addElement(new Option( |
---|
| 231 | "\tnumber of cross validation folds to use for estimating accuracy.\n" |
---|
| 232 | + "\t(default=5)", |
---|
| 233 | "F", 1, "-F <num>")); |
---|
| 234 | |
---|
| 235 | newVector.addElement(new Option( |
---|
| 236 | "\tSeed for cross validation accuracy testimation.\n" |
---|
| 237 | + "\t(default = 1)", |
---|
| 238 | "R", 1,"-R <seed>")); |
---|
| 239 | |
---|
| 240 | newVector.addElement(new Option( |
---|
| 241 | "\tthreshold by which to execute another cross validation\n" |
---|
| 242 | + "\t(standard deviation---expressed as a percentage of the mean).\n" |
---|
| 243 | + "\t(default: 0.01 (1%))", |
---|
| 244 | "T", 1, "-T <num>")); |
---|
| 245 | |
---|
| 246 | newVector.addElement(new Option( |
---|
| 247 | "\tPerformance evaluation measure to use for selecting attributes.\n" + |
---|
| 248 | "\t(Default = accuracy for discrete class and rmse for numeric class)", |
---|
| 249 | "E", 1, "-E <acc | rmse | mae | f-meas | auc>")); |
---|
| 250 | |
---|
| 251 | if ((m_BaseClassifier != null) && |
---|
| 252 | (m_BaseClassifier instanceof OptionHandler)) { |
---|
| 253 | newVector.addElement(new Option("", "", 0, "\nOptions specific to scheme " |
---|
| 254 | + m_BaseClassifier.getClass().getName() |
---|
| 255 | + ":")); |
---|
| 256 | Enumeration enu = ((OptionHandler)m_BaseClassifier).listOptions(); |
---|
| 257 | |
---|
| 258 | while (enu.hasMoreElements()) { |
---|
| 259 | newVector.addElement(enu.nextElement()); |
---|
| 260 | } |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | return newVector.elements(); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | /** |
---|
| 268 | * Parses a given list of options. <p/> |
---|
| 269 | * |
---|
| 270 | <!-- options-start --> |
---|
| 271 | * Valid options are: <p/> |
---|
| 272 | * |
---|
| 273 | * <pre> -B <base learner> |
---|
| 274 | * class name of base learner to use for accuracy estimation. |
---|
| 275 | * Place any classifier options LAST on the command line |
---|
| 276 | * following a "--". eg.: |
---|
| 277 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
| 278 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 279 | * |
---|
| 280 | * <pre> -F <num> |
---|
| 281 | * number of cross validation folds to use for estimating accuracy. |
---|
| 282 | * (default=5)</pre> |
---|
| 283 | * |
---|
| 284 | * <pre> -R <seed> |
---|
| 285 | * Seed for cross validation accuracy testimation. |
---|
| 286 | * (default = 1)</pre> |
---|
| 287 | * |
---|
| 288 | * <pre> -T <num> |
---|
| 289 | * threshold by which to execute another cross validation |
---|
| 290 | * (standard deviation---expressed as a percentage of the mean). |
---|
| 291 | * (default: 0.01 (1%))</pre> |
---|
| 292 | * |
---|
| 293 | * <pre> -E <acc | rmse | mae | f-meas | auc> |
---|
| 294 | * Performance evaluation measure to use for selecting attributes. |
---|
| 295 | * (Default = accuracy for discrete class and rmse for numeric class)</pre> |
---|
| 296 | * |
---|
| 297 | * <pre> |
---|
| 298 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
| 299 | * </pre> |
---|
| 300 | * |
---|
| 301 | * <pre> -D |
---|
| 302 | * If set, classifier is run in debug mode and |
---|
| 303 | * may output additional info to the console</pre> |
---|
| 304 | * |
---|
| 305 | <!-- options-end --> |
---|
| 306 | * |
---|
| 307 | * @param options the list of options as an array of strings |
---|
| 308 | * @throws Exception if an option is not supported |
---|
| 309 | */ |
---|
| 310 | public void setOptions (String[] options) |
---|
| 311 | throws Exception { |
---|
| 312 | String optionString; |
---|
| 313 | resetOptions(); |
---|
| 314 | optionString = Utils.getOption('B', options); |
---|
| 315 | |
---|
| 316 | if (optionString.length() == 0) |
---|
| 317 | optionString = ZeroR.class.getName(); |
---|
| 318 | setClassifier(AbstractClassifier.forName(optionString, |
---|
| 319 | Utils.partitionOptions(options))); |
---|
| 320 | optionString = Utils.getOption('F', options); |
---|
| 321 | |
---|
| 322 | if (optionString.length() != 0) { |
---|
| 323 | setFolds(Integer.parseInt(optionString)); |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | optionString = Utils.getOption('R', options); |
---|
| 327 | if (optionString.length() != 0) { |
---|
| 328 | setSeed(Integer.parseInt(optionString)); |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | // optionString = Utils.getOption('S',options); |
---|
| 332 | // if (optionString.length() != 0) |
---|
| 333 | // { |
---|
| 334 | // seed = Integer.parseInt(optionString); |
---|
| 335 | // } |
---|
| 336 | optionString = Utils.getOption('T', options); |
---|
| 337 | |
---|
| 338 | if (optionString.length() != 0) { |
---|
| 339 | Double temp; |
---|
| 340 | temp = Double.valueOf(optionString); |
---|
| 341 | setThreshold(temp.doubleValue()); |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | optionString = Utils.getOption('E', options); |
---|
| 345 | if (optionString.length() != 0) { |
---|
| 346 | if (optionString.equals("acc")) { |
---|
| 347 | setEvaluationMeasure(new SelectedTag(EVAL_ACCURACY, TAGS_EVALUATION)); |
---|
| 348 | } else if (optionString.equals("rmse")) { |
---|
| 349 | setEvaluationMeasure(new SelectedTag(EVAL_RMSE, TAGS_EVALUATION)); |
---|
| 350 | } else if (optionString.equals("mae")) { |
---|
| 351 | setEvaluationMeasure(new SelectedTag(EVAL_MAE, TAGS_EVALUATION)); |
---|
| 352 | } else if (optionString.equals("f-meas")) { |
---|
| 353 | setEvaluationMeasure(new SelectedTag(EVAL_FMEASURE, TAGS_EVALUATION)); |
---|
| 354 | } else if (optionString.equals("auc")) { |
---|
| 355 | setEvaluationMeasure(new SelectedTag(EVAL_AUC, TAGS_EVALUATION)); |
---|
| 356 | } else { |
---|
| 357 | throw new IllegalArgumentException("Invalid evaluation measure"); |
---|
| 358 | } |
---|
| 359 | } |
---|
| 360 | } |
---|
| 361 | |
---|
| 362 | /** |
---|
| 363 | * Returns the tip text for this property |
---|
| 364 | * @return tip text for this property suitable for |
---|
| 365 | * displaying in the explorer/experimenter gui |
---|
| 366 | */ |
---|
| 367 | public String evaluationMeasureTipText() { |
---|
| 368 | return "The measure used to evaluate the performance of attribute combinations."; |
---|
| 369 | } |
---|
| 370 | /** |
---|
| 371 | * Gets the currently set performance evaluation measure used for selecting |
---|
| 372 | * attributes for the decision table |
---|
| 373 | * |
---|
| 374 | * @return the performance evaluation measure |
---|
| 375 | */ |
---|
| 376 | public SelectedTag getEvaluationMeasure() { |
---|
| 377 | return new SelectedTag(m_evaluationMeasure, TAGS_EVALUATION); |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | /** |
---|
| 381 | * Sets the performance evaluation measure to use for selecting attributes |
---|
| 382 | * for the decision table |
---|
| 383 | * |
---|
| 384 | * @param newMethod the new performance evaluation metric to use |
---|
| 385 | */ |
---|
| 386 | public void setEvaluationMeasure(SelectedTag newMethod) { |
---|
| 387 | if (newMethod.getTags() == TAGS_EVALUATION) { |
---|
| 388 | m_evaluationMeasure = newMethod.getSelectedTag().getID(); |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | /** |
---|
| 393 | * Returns the tip text for this property |
---|
| 394 | * @return tip text for this property suitable for |
---|
| 395 | * displaying in the explorer/experimenter gui |
---|
| 396 | */ |
---|
| 397 | public String thresholdTipText() { |
---|
| 398 | return "Repeat xval if stdev of mean exceeds this value."; |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /** |
---|
| 402 | * Set the value of the threshold for repeating cross validation |
---|
| 403 | * |
---|
| 404 | * @param t the value of the threshold |
---|
| 405 | */ |
---|
| 406 | public void setThreshold (double t) { |
---|
| 407 | m_threshold = t; |
---|
| 408 | } |
---|
| 409 | |
---|
| 410 | |
---|
| 411 | /** |
---|
| 412 | * Get the value of the threshold |
---|
| 413 | * |
---|
| 414 | * @return the threshold as a double |
---|
| 415 | */ |
---|
| 416 | public double getThreshold () { |
---|
| 417 | return m_threshold; |
---|
| 418 | } |
---|
| 419 | |
---|
| 420 | /** |
---|
| 421 | * Returns the tip text for this property |
---|
| 422 | * @return tip text for this property suitable for |
---|
| 423 | * displaying in the explorer/experimenter gui |
---|
| 424 | */ |
---|
| 425 | public String foldsTipText() { |
---|
| 426 | return "Number of xval folds to use when estimating subset accuracy."; |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | /** |
---|
| 430 | * Set the number of folds to use for accuracy estimation |
---|
| 431 | * |
---|
| 432 | * @param f the number of folds |
---|
| 433 | */ |
---|
| 434 | public void setFolds (int f) { |
---|
| 435 | m_folds = f; |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | /** |
---|
| 440 | * Get the number of folds used for accuracy estimation |
---|
| 441 | * |
---|
| 442 | * @return the number of folds |
---|
| 443 | */ |
---|
| 444 | public int getFolds () { |
---|
| 445 | return m_folds; |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Returns the tip text for this property |
---|
| 450 | * @return tip text for this property suitable for |
---|
| 451 | * displaying in the explorer/experimenter gui |
---|
| 452 | */ |
---|
| 453 | public String seedTipText() { |
---|
| 454 | return "Seed to use for randomly generating xval splits."; |
---|
| 455 | } |
---|
| 456 | |
---|
| 457 | /** |
---|
| 458 | * Set the seed to use for cross validation |
---|
| 459 | * |
---|
| 460 | * @param s the seed |
---|
| 461 | */ |
---|
| 462 | public void setSeed (int s) { |
---|
| 463 | m_seed = s; |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | /** |
---|
| 468 | * Get the random number seed used for cross validation |
---|
| 469 | * |
---|
| 470 | * @return the seed |
---|
| 471 | */ |
---|
| 472 | public int getSeed () { |
---|
| 473 | return m_seed; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /** |
---|
| 477 | * Returns the tip text for this property |
---|
| 478 | * @return tip text for this property suitable for |
---|
| 479 | * displaying in the explorer/experimenter gui |
---|
| 480 | */ |
---|
| 481 | public String classifierTipText() { |
---|
| 482 | return "Classifier to use for estimating the accuracy of subsets"; |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Set the classifier to use for accuracy estimation |
---|
| 487 | * |
---|
| 488 | * @param newClassifier the Classifier to use. |
---|
| 489 | */ |
---|
| 490 | public void setClassifier (Classifier newClassifier) { |
---|
| 491 | m_BaseClassifier = newClassifier; |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Get the classifier used as the base learner. |
---|
| 497 | * |
---|
| 498 | * @return the classifier used as the classifier |
---|
| 499 | */ |
---|
| 500 | public Classifier getClassifier () { |
---|
| 501 | return m_BaseClassifier; |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | /** |
---|
| 506 | * Gets the current settings of WrapperSubsetEval. |
---|
| 507 | * |
---|
| 508 | * @return an array of strings suitable for passing to setOptions() |
---|
| 509 | */ |
---|
| 510 | public String[] getOptions () { |
---|
| 511 | String[] classifierOptions = new String[0]; |
---|
| 512 | |
---|
| 513 | if ((m_BaseClassifier != null) && |
---|
| 514 | (m_BaseClassifier instanceof OptionHandler)) { |
---|
| 515 | classifierOptions = ((OptionHandler)m_BaseClassifier).getOptions(); |
---|
| 516 | } |
---|
| 517 | |
---|
| 518 | String[] options = new String[9 + classifierOptions.length]; |
---|
| 519 | int current = 0; |
---|
| 520 | |
---|
| 521 | if (getClassifier() != null) { |
---|
| 522 | options[current++] = "-B"; |
---|
| 523 | options[current++] = getClassifier().getClass().getName(); |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | options[current++] = "-F"; |
---|
| 527 | options[current++] = "" + getFolds(); |
---|
| 528 | options[current++] = "-T"; |
---|
| 529 | options[current++] = "" + getThreshold(); |
---|
| 530 | options[current++] = "-R"; |
---|
| 531 | options[current++] = "" + getSeed(); |
---|
| 532 | options[current++] = "--"; |
---|
| 533 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 534 | classifierOptions.length); |
---|
| 535 | current += classifierOptions.length; |
---|
| 536 | |
---|
| 537 | while (current < options.length) { |
---|
| 538 | options[current++] = ""; |
---|
| 539 | } |
---|
| 540 | |
---|
| 541 | return options; |
---|
| 542 | } |
---|
| 543 | |
---|
| 544 | |
---|
| 545 | protected void resetOptions () { |
---|
| 546 | m_trainInstances = null; |
---|
| 547 | m_Evaluation = null; |
---|
| 548 | m_BaseClassifier = new ZeroR(); |
---|
| 549 | m_folds = 5; |
---|
| 550 | m_seed = 1; |
---|
| 551 | m_threshold = 0.01; |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | /** |
---|
| 555 | * Returns the capabilities of this evaluator. |
---|
| 556 | * |
---|
| 557 | * @return the capabilities of this evaluator |
---|
| 558 | * @see Capabilities |
---|
| 559 | */ |
---|
| 560 | public Capabilities getCapabilities() { |
---|
| 561 | Capabilities result; |
---|
| 562 | |
---|
| 563 | if (getClassifier() == null) { |
---|
| 564 | result = super.getCapabilities(); |
---|
| 565 | result.disableAll(); |
---|
| 566 | } else { |
---|
| 567 | result = getClassifier().getCapabilities(); |
---|
| 568 | } |
---|
| 569 | |
---|
| 570 | // set dependencies |
---|
| 571 | for (Capability cap: Capability.values()) |
---|
| 572 | result.enableDependency(cap); |
---|
| 573 | |
---|
| 574 | // adjustment for class based on selected evaluation metric |
---|
| 575 | result.disable(Capability.NUMERIC_CLASS); |
---|
| 576 | result.disable(Capability.DATE_CLASS); |
---|
| 577 | if (m_evaluationMeasure != EVAL_ACCURACY && m_evaluationMeasure != EVAL_FMEASURE && |
---|
| 578 | m_evaluationMeasure != EVAL_AUC) { |
---|
| 579 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 580 | result.enable(Capability.DATE_CLASS); |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | result.setMinimumNumberInstances(getFolds()); |
---|
| 584 | |
---|
| 585 | return result; |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | /** |
---|
| 589 | * Generates a attribute evaluator. Has to initialize all fields of the |
---|
| 590 | * evaluator that are not being set via options. |
---|
| 591 | * |
---|
| 592 | * @param data set of instances serving as training data |
---|
| 593 | * @throws Exception if the evaluator has not been |
---|
| 594 | * generated successfully |
---|
| 595 | */ |
---|
| 596 | public void buildEvaluator (Instances data) |
---|
| 597 | throws Exception { |
---|
| 598 | |
---|
| 599 | // can evaluator handle data? |
---|
| 600 | getCapabilities().testWithFail(data); |
---|
| 601 | |
---|
| 602 | m_trainInstances = data; |
---|
| 603 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 604 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 605 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 606 | } |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | /** |
---|
| 610 | * Evaluates a subset of attributes |
---|
| 611 | * |
---|
| 612 | * @param subset a bitset representing the attribute subset to be |
---|
| 613 | * evaluated |
---|
| 614 | * @return the error rate |
---|
| 615 | * @throws Exception if the subset could not be evaluated |
---|
| 616 | */ |
---|
| 617 | public double evaluateSubset (BitSet subset) |
---|
| 618 | throws Exception { |
---|
| 619 | double evalMetric = 0; |
---|
| 620 | double[] repError = new double[5]; |
---|
| 621 | int numAttributes = 0; |
---|
| 622 | int i, j; |
---|
| 623 | Random Rnd = new Random(m_seed); |
---|
| 624 | Remove delTransform = new Remove(); |
---|
| 625 | delTransform.setInvertSelection(true); |
---|
| 626 | // copy the instances |
---|
| 627 | Instances trainCopy = new Instances(m_trainInstances); |
---|
| 628 | |
---|
| 629 | // count attributes set in the BitSet |
---|
| 630 | for (i = 0; i < m_numAttribs; i++) { |
---|
| 631 | if (subset.get(i)) { |
---|
| 632 | numAttributes++; |
---|
| 633 | } |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
| 637 | int[] featArray = new int[numAttributes + 1]; |
---|
| 638 | |
---|
| 639 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
| 640 | if (subset.get(i)) { |
---|
| 641 | featArray[j++] = i; |
---|
| 642 | } |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | featArray[j] = m_classIndex; |
---|
| 646 | delTransform.setAttributeIndicesArray(featArray); |
---|
| 647 | delTransform.setInputFormat(trainCopy); |
---|
| 648 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
| 649 | |
---|
| 650 | // max of 5 repetitions of cross validation |
---|
| 651 | for (i = 0; i < 5; i++) { |
---|
| 652 | m_Evaluation = new Evaluation(trainCopy); |
---|
| 653 | m_Evaluation.crossValidateModel(m_BaseClassifier, trainCopy, m_folds, Rnd); |
---|
| 654 | |
---|
| 655 | switch (m_evaluationMeasure) { |
---|
| 656 | case EVAL_DEFAULT: |
---|
| 657 | repError[i] = m_Evaluation.errorRate(); |
---|
| 658 | break; |
---|
| 659 | case EVAL_ACCURACY: |
---|
| 660 | repError[i] = m_Evaluation.errorRate(); |
---|
| 661 | break; |
---|
| 662 | case EVAL_RMSE: |
---|
| 663 | repError[i] = m_Evaluation.rootMeanSquaredError(); |
---|
| 664 | break; |
---|
| 665 | case EVAL_MAE: |
---|
| 666 | repError[i] = m_Evaluation.meanAbsoluteError(); |
---|
| 667 | break; |
---|
| 668 | case EVAL_FMEASURE: |
---|
| 669 | repError[i] = m_Evaluation.weightedFMeasure(); |
---|
| 670 | break; |
---|
| 671 | case EVAL_AUC: |
---|
| 672 | repError[i] = m_Evaluation.weightedAreaUnderROC(); |
---|
| 673 | break; |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | // check on the standard deviation |
---|
| 677 | if (!repeat(repError, i + 1)) { |
---|
| 678 | i++; |
---|
| 679 | break; |
---|
| 680 | } |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | for (j = 0; j < i; j++) { |
---|
| 684 | evalMetric += repError[j]; |
---|
| 685 | } |
---|
| 686 | |
---|
| 687 | evalMetric /= (double)i; |
---|
| 688 | m_Evaluation = null; |
---|
| 689 | |
---|
| 690 | switch (m_evaluationMeasure) { |
---|
| 691 | case EVAL_DEFAULT: |
---|
| 692 | case EVAL_ACCURACY: |
---|
| 693 | case EVAL_RMSE: |
---|
| 694 | case EVAL_MAE: |
---|
| 695 | evalMetric = -evalMetric; // maximize |
---|
| 696 | break; |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | return evalMetric; |
---|
| 700 | } |
---|
| 701 | |
---|
| 702 | |
---|
| 703 | /** |
---|
| 704 | * Returns a string describing the wrapper |
---|
| 705 | * |
---|
| 706 | * @return the description as a string |
---|
| 707 | */ |
---|
| 708 | public String toString () { |
---|
| 709 | StringBuffer text = new StringBuffer(); |
---|
| 710 | |
---|
| 711 | if (m_trainInstances == null) { |
---|
| 712 | text.append("\tWrapper subset evaluator has not been built yet\n"); |
---|
| 713 | } |
---|
| 714 | else { |
---|
| 715 | text.append("\tWrapper Subset Evaluator\n"); |
---|
| 716 | text.append("\tLearning scheme: " |
---|
| 717 | + getClassifier().getClass().getName() + "\n"); |
---|
| 718 | text.append("\tScheme options: "); |
---|
| 719 | String[] classifierOptions = new String[0]; |
---|
| 720 | |
---|
| 721 | if (m_BaseClassifier instanceof OptionHandler) { |
---|
| 722 | classifierOptions = ((OptionHandler)m_BaseClassifier).getOptions(); |
---|
| 723 | |
---|
| 724 | for (int i = 0; i < classifierOptions.length; i++) { |
---|
| 725 | text.append(classifierOptions[i] + " "); |
---|
| 726 | } |
---|
| 727 | } |
---|
| 728 | |
---|
| 729 | text.append("\n"); |
---|
| 730 | switch (m_evaluationMeasure) { |
---|
| 731 | case EVAL_DEFAULT: |
---|
| 732 | case EVAL_ACCURACY: |
---|
| 733 | if (m_trainInstances.attribute(m_classIndex).isNumeric()) { |
---|
| 734 | text.append("\tSubset evaluation: RMSE\n"); |
---|
| 735 | } else { |
---|
| 736 | text.append("\tSubset evaluation: classification error\n"); |
---|
| 737 | } |
---|
| 738 | break; |
---|
| 739 | case EVAL_RMSE: |
---|
| 740 | if (m_trainInstances.attribute(m_classIndex).isNumeric()) { |
---|
| 741 | text.append("\tSubset evaluation: RMSE\n"); |
---|
| 742 | } else { |
---|
| 743 | text.append("\tSubset evaluation: RMSE (probability estimates)\n"); |
---|
| 744 | } |
---|
| 745 | break; |
---|
| 746 | case EVAL_MAE: |
---|
| 747 | if (m_trainInstances.attribute(m_classIndex).isNumeric()) { |
---|
| 748 | text.append("\tSubset evaluation: MAE\n"); |
---|
| 749 | } else { |
---|
| 750 | text.append("\tSubset evaluation: MAE (probability estimates)\n"); |
---|
| 751 | } |
---|
| 752 | break; |
---|
| 753 | case EVAL_FMEASURE: |
---|
| 754 | text.append("\tSubset evaluation: F-measure\n"); |
---|
| 755 | break; |
---|
| 756 | case EVAL_AUC: |
---|
| 757 | text.append("\tSubset evaluation: area under the ROC curve\n"); |
---|
| 758 | break; |
---|
| 759 | } |
---|
| 760 | |
---|
| 761 | text.append("\tNumber of folds for accuracy estimation: " |
---|
| 762 | + m_folds |
---|
| 763 | + "\n"); |
---|
| 764 | } |
---|
| 765 | |
---|
| 766 | return text.toString(); |
---|
| 767 | } |
---|
| 768 | |
---|
| 769 | |
---|
| 770 | /** |
---|
| 771 | * decides whether to do another repeat of cross validation. If the |
---|
| 772 | * standard deviation of the cross validations |
---|
| 773 | * is greater than threshold% of the mean (default 1%) then another |
---|
| 774 | * repeat is done. |
---|
| 775 | * |
---|
| 776 | * @param repError an array of cross validation results |
---|
| 777 | * @param entries the number of cross validations done so far |
---|
| 778 | * @return true if another cv is to be done |
---|
| 779 | */ |
---|
| 780 | private boolean repeat (double[] repError, int entries) { |
---|
| 781 | int i; |
---|
| 782 | double mean = 0; |
---|
| 783 | double variance = 0; |
---|
| 784 | |
---|
| 785 | if (entries == 1) { |
---|
| 786 | return true; |
---|
| 787 | } |
---|
| 788 | |
---|
| 789 | for (i = 0; i < entries; i++) { |
---|
| 790 | mean += repError[i]; |
---|
| 791 | } |
---|
| 792 | |
---|
| 793 | mean /= (double)entries; |
---|
| 794 | |
---|
| 795 | for (i = 0; i < entries; i++) { |
---|
| 796 | variance += ((repError[i] - mean)*(repError[i] - mean)); |
---|
| 797 | } |
---|
| 798 | |
---|
| 799 | variance /= (double)entries; |
---|
| 800 | |
---|
| 801 | if (variance > 0) { |
---|
| 802 | variance = Math.sqrt(variance); |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | if ((variance/mean) > m_threshold) { |
---|
| 806 | return true; |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | return false; |
---|
| 810 | } |
---|
| 811 | |
---|
| 812 | /** |
---|
| 813 | * Returns the revision string. |
---|
| 814 | * |
---|
| 815 | * @return the revision |
---|
| 816 | */ |
---|
| 817 | public String getRevision() { |
---|
| 818 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 819 | } |
---|
| 820 | |
---|
| 821 | /** |
---|
| 822 | * Main method for testing this class. |
---|
| 823 | * |
---|
| 824 | * @param args the options |
---|
| 825 | */ |
---|
| 826 | public static void main (String[] args) { |
---|
| 827 | runEvaluator(new WrapperSubsetEval(), args); |
---|
| 828 | } |
---|
| 829 | } |
---|
| 830 | |
---|