1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * GainRatioAttributeEval.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.ContingencyTables; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.OptionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.filters.Filter; |
---|
35 | import weka.filters.supervised.attribute.Discretize; |
---|
36 | |
---|
37 | import java.util.Enumeration; |
---|
38 | import java.util.Vector; |
---|
39 | |
---|
40 | /** |
---|
41 | <!-- globalinfo-start --> |
---|
42 | * GainRatioAttributeEval :<br/> |
---|
43 | * <br/> |
---|
44 | * Evaluates the worth of an attribute by measuring the gain ratio with respect to the class.<br/> |
---|
45 | * <br/> |
---|
46 | * GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / H(Attribute).<br/> |
---|
47 | * <p/> |
---|
48 | <!-- globalinfo-end --> |
---|
49 | * |
---|
50 | <!-- options-start --> |
---|
51 | * Valid options are: <p/> |
---|
52 | * |
---|
53 | * <pre> -M |
---|
54 | * treat missing values as a seperate value.</pre> |
---|
55 | * |
---|
56 | <!-- options-end --> |
---|
57 | * |
---|
58 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
59 | * @version $Revision: 5447 $ |
---|
60 | * @see Discretize |
---|
61 | */ |
---|
62 | public class GainRatioAttributeEval |
---|
63 | extends ASEvaluation |
---|
64 | implements AttributeEvaluator, OptionHandler { |
---|
65 | |
---|
66 | /** for serialization */ |
---|
67 | static final long serialVersionUID = -8504656625598579926L; |
---|
68 | |
---|
69 | /** The training instances */ |
---|
70 | private Instances m_trainInstances; |
---|
71 | |
---|
72 | /** The class index */ |
---|
73 | private int m_classIndex; |
---|
74 | |
---|
75 | /** The number of attributes */ |
---|
76 | private int m_numAttribs; |
---|
77 | |
---|
78 | /** The number of instances */ |
---|
79 | private int m_numInstances; |
---|
80 | |
---|
81 | /** The number of classes */ |
---|
82 | private int m_numClasses; |
---|
83 | |
---|
84 | /** Merge missing values */ |
---|
85 | private boolean m_missing_merge; |
---|
86 | |
---|
87 | /** |
---|
88 | * Returns a string describing this attribute evaluator |
---|
89 | * @return a description of the evaluator suitable for |
---|
90 | * displaying in the explorer/experimenter gui |
---|
91 | */ |
---|
92 | public String globalInfo() { |
---|
93 | return "GainRatioAttributeEval :\n\nEvaluates the worth of an attribute " |
---|
94 | +"by measuring the gain ratio with respect to the class.\n\n" |
---|
95 | +"GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / " |
---|
96 | +"H(Attribute).\n"; |
---|
97 | } |
---|
98 | |
---|
99 | /** |
---|
100 | * Constructor |
---|
101 | */ |
---|
102 | public GainRatioAttributeEval () { |
---|
103 | resetOptions(); |
---|
104 | } |
---|
105 | |
---|
106 | |
---|
107 | /** |
---|
108 | * Returns an enumeration describing the available options. |
---|
109 | * @return an enumeration of all the available options. |
---|
110 | **/ |
---|
111 | public Enumeration listOptions () { |
---|
112 | Vector newVector = new Vector(1); |
---|
113 | newVector.addElement(new Option("\ttreat missing values as a seperate " |
---|
114 | + "value.", "M", 0, "-M")); |
---|
115 | return newVector.elements(); |
---|
116 | } |
---|
117 | |
---|
118 | |
---|
119 | /** |
---|
120 | * Parses a given list of options. <p/> |
---|
121 | * |
---|
122 | <!-- options-start --> |
---|
123 | * Valid options are: <p/> |
---|
124 | * |
---|
125 | * <pre> -M |
---|
126 | * treat missing values as a seperate value.</pre> |
---|
127 | * |
---|
128 | <!-- options-end --> |
---|
129 | * |
---|
130 | * @param options the list of options as an array of strings |
---|
131 | * @throws Exception if an option is not supported |
---|
132 | **/ |
---|
133 | public void setOptions (String[] options) |
---|
134 | throws Exception { |
---|
135 | resetOptions(); |
---|
136 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
137 | } |
---|
138 | |
---|
139 | /** |
---|
140 | * Returns the tip text for this property |
---|
141 | * @return tip text for this property suitable for |
---|
142 | * displaying in the explorer/experimenter gui |
---|
143 | */ |
---|
144 | public String missingMergeTipText() { |
---|
145 | return "Distribute counts for missing values. Counts are distributed " |
---|
146 | +"across other values in proportion to their frequency. Otherwise, " |
---|
147 | +"missing is treated as a separate value."; |
---|
148 | } |
---|
149 | |
---|
150 | /** |
---|
151 | * distribute the counts for missing values across observed values |
---|
152 | * |
---|
153 | * @param b true=distribute missing values. |
---|
154 | */ |
---|
155 | public void setMissingMerge (boolean b) { |
---|
156 | m_missing_merge = b; |
---|
157 | } |
---|
158 | |
---|
159 | |
---|
160 | /** |
---|
161 | * get whether missing values are being distributed or not |
---|
162 | * |
---|
163 | * @return true if missing values are being distributed. |
---|
164 | */ |
---|
165 | public boolean getMissingMerge () { |
---|
166 | return m_missing_merge; |
---|
167 | } |
---|
168 | |
---|
169 | |
---|
170 | /** |
---|
171 | * Gets the current settings of WrapperSubsetEval. |
---|
172 | * @return an array of strings suitable for passing to setOptions() |
---|
173 | */ |
---|
174 | public String[] getOptions () { |
---|
175 | String[] options = new String[1]; |
---|
176 | int current = 0; |
---|
177 | |
---|
178 | if (!getMissingMerge()) { |
---|
179 | options[current++] = "-M"; |
---|
180 | } |
---|
181 | |
---|
182 | while (current < options.length) { |
---|
183 | options[current++] = ""; |
---|
184 | } |
---|
185 | |
---|
186 | return options; |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * Returns the capabilities of this evaluator. |
---|
191 | * |
---|
192 | * @return the capabilities of this evaluator |
---|
193 | * @see Capabilities |
---|
194 | */ |
---|
195 | public Capabilities getCapabilities() { |
---|
196 | Capabilities result = super.getCapabilities(); |
---|
197 | result.disableAll(); |
---|
198 | |
---|
199 | // attributes |
---|
200 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
201 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
202 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
203 | result.enable(Capability.MISSING_VALUES); |
---|
204 | |
---|
205 | // class |
---|
206 | result.enable(Capability.NOMINAL_CLASS); |
---|
207 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
208 | |
---|
209 | return result; |
---|
210 | } |
---|
211 | |
---|
212 | /** |
---|
213 | * Initializes a gain ratio attribute evaluator. |
---|
214 | * Discretizes all attributes that are numeric. |
---|
215 | * |
---|
216 | * @param data set of instances serving as training data |
---|
217 | * @throws Exception if the evaluator has not been |
---|
218 | * generated successfully |
---|
219 | */ |
---|
220 | public void buildEvaluator (Instances data) |
---|
221 | throws Exception { |
---|
222 | |
---|
223 | // can evaluator handle data? |
---|
224 | getCapabilities().testWithFail(data); |
---|
225 | |
---|
226 | m_trainInstances = data; |
---|
227 | m_classIndex = m_trainInstances.classIndex(); |
---|
228 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
229 | m_numInstances = m_trainInstances.numInstances(); |
---|
230 | Discretize disTransform = new Discretize(); |
---|
231 | disTransform.setUseBetterEncoding(true); |
---|
232 | disTransform.setInputFormat(m_trainInstances); |
---|
233 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
234 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
235 | } |
---|
236 | |
---|
237 | |
---|
238 | /** |
---|
239 | * reset options to default values |
---|
240 | */ |
---|
241 | protected void resetOptions () { |
---|
242 | m_trainInstances = null; |
---|
243 | m_missing_merge = true; |
---|
244 | } |
---|
245 | |
---|
246 | |
---|
247 | /** |
---|
248 | * evaluates an individual attribute by measuring the gain ratio |
---|
249 | * of the class given the attribute. |
---|
250 | * |
---|
251 | * @param attribute the index of the attribute to be evaluated |
---|
252 | * @return the gain ratio |
---|
253 | * @throws Exception if the attribute could not be evaluated |
---|
254 | */ |
---|
255 | public double evaluateAttribute (int attribute) |
---|
256 | throws Exception { |
---|
257 | int i, j, ii, jj; |
---|
258 | int ni, nj; |
---|
259 | double sum = 0.0; |
---|
260 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
261 | nj = m_numClasses + 1; |
---|
262 | double[] sumi, sumj; |
---|
263 | Instance inst; |
---|
264 | double temp = 0.0; |
---|
265 | sumi = new double[ni]; |
---|
266 | sumj = new double[nj]; |
---|
267 | double[][] counts = new double[ni][nj]; |
---|
268 | sumi = new double[ni]; |
---|
269 | sumj = new double[nj]; |
---|
270 | |
---|
271 | for (i = 0; i < ni; i++) { |
---|
272 | sumi[i] = 0.0; |
---|
273 | |
---|
274 | for (j = 0; j < nj; j++) { |
---|
275 | sumj[j] = 0.0; |
---|
276 | counts[i][j] = 0.0; |
---|
277 | } |
---|
278 | } |
---|
279 | |
---|
280 | // Fill the contingency table |
---|
281 | for (i = 0; i < m_numInstances; i++) { |
---|
282 | inst = m_trainInstances.instance(i); |
---|
283 | |
---|
284 | if (inst.isMissing(attribute)) { |
---|
285 | ii = ni - 1; |
---|
286 | } |
---|
287 | else { |
---|
288 | ii = (int)inst.value(attribute); |
---|
289 | } |
---|
290 | |
---|
291 | if (inst.isMissing(m_classIndex)) { |
---|
292 | jj = nj - 1; |
---|
293 | } |
---|
294 | else { |
---|
295 | jj = (int)inst.value(m_classIndex); |
---|
296 | } |
---|
297 | |
---|
298 | counts[ii][jj]++; |
---|
299 | } |
---|
300 | |
---|
301 | // get the row totals |
---|
302 | for (i = 0; i < ni; i++) { |
---|
303 | sumi[i] = 0.0; |
---|
304 | |
---|
305 | for (j = 0; j < nj; j++) { |
---|
306 | sumi[i] += counts[i][j]; |
---|
307 | sum += counts[i][j]; |
---|
308 | } |
---|
309 | } |
---|
310 | |
---|
311 | // get the column totals |
---|
312 | for (j = 0; j < nj; j++) { |
---|
313 | sumj[j] = 0.0; |
---|
314 | |
---|
315 | for (i = 0; i < ni; i++) { |
---|
316 | sumj[j] += counts[i][j]; |
---|
317 | } |
---|
318 | } |
---|
319 | |
---|
320 | // distribute missing counts |
---|
321 | if (m_missing_merge && |
---|
322 | (sumi[ni-1] < m_numInstances) && |
---|
323 | (sumj[nj-1] < m_numInstances)) { |
---|
324 | double[] i_copy = new double[sumi.length]; |
---|
325 | double[] j_copy = new double[sumj.length]; |
---|
326 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
327 | |
---|
328 | for (i = 0; i < ni; i++) { |
---|
329 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
330 | } |
---|
331 | |
---|
332 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
333 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
334 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] - |
---|
335 | counts[ni - 1][nj - 1]); |
---|
336 | |
---|
337 | // do the missing i's |
---|
338 | if (sumi[ni - 1] > 0.0) { |
---|
339 | for (j = 0; j < nj - 1; j++) { |
---|
340 | if (counts[ni - 1][j] > 0.0) { |
---|
341 | for (i = 0; i < ni - 1; i++) { |
---|
342 | temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); |
---|
343 | counts[i][j] += temp; |
---|
344 | sumi[i] += temp; |
---|
345 | } |
---|
346 | |
---|
347 | counts[ni - 1][j] = 0.0; |
---|
348 | } |
---|
349 | } |
---|
350 | } |
---|
351 | |
---|
352 | sumi[ni - 1] = 0.0; |
---|
353 | |
---|
354 | // do the missing j's |
---|
355 | if (sumj[nj - 1] > 0.0) { |
---|
356 | for (i = 0; i < ni - 1; i++) { |
---|
357 | if (counts[i][nj - 1] > 0.0) { |
---|
358 | for (j = 0; j < nj - 1; j++) { |
---|
359 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
360 | counts[i][j] += temp; |
---|
361 | sumj[j] += temp; |
---|
362 | } |
---|
363 | |
---|
364 | counts[i][nj - 1] = 0.0; |
---|
365 | } |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | sumj[nj - 1] = 0.0; |
---|
370 | |
---|
371 | // do the both missing |
---|
372 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
373 | for (i = 0; i < ni - 1; i++) { |
---|
374 | for (j = 0; j < nj - 1; j++) { |
---|
375 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
376 | counts_copy[ni - 1][nj - 1]; |
---|
377 | counts[i][j] += temp; |
---|
378 | sumi[i] += temp; |
---|
379 | sumj[j] += temp; |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | counts[ni - 1][nj - 1] = 0.0; |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | return ContingencyTables.gainRatio(counts); |
---|
388 | } |
---|
389 | |
---|
390 | |
---|
391 | /** |
---|
392 | * Return a description of the evaluator |
---|
393 | * @return description as a string |
---|
394 | */ |
---|
395 | public String toString () { |
---|
396 | StringBuffer text = new StringBuffer(); |
---|
397 | |
---|
398 | if (m_trainInstances == null) { |
---|
399 | text.append("\tGain Ratio evaluator has not been built"); |
---|
400 | } |
---|
401 | else { |
---|
402 | text.append("\tGain Ratio feature evaluator"); |
---|
403 | |
---|
404 | if (!m_missing_merge) { |
---|
405 | text.append("\n\tMissing values treated as seperate"); |
---|
406 | } |
---|
407 | } |
---|
408 | |
---|
409 | text.append("\n"); |
---|
410 | return text.toString(); |
---|
411 | } |
---|
412 | |
---|
413 | /** |
---|
414 | * Returns the revision string. |
---|
415 | * |
---|
416 | * @return the revision |
---|
417 | */ |
---|
418 | public String getRevision() { |
---|
419 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
420 | } |
---|
421 | |
---|
422 | /** |
---|
423 | * Main method. |
---|
424 | * |
---|
425 | * @param args the options |
---|
426 | * -t training file |
---|
427 | */ |
---|
428 | public static void main (String[] args) { |
---|
429 | runEvaluator(new GainRatioAttributeEval(), args); |
---|
430 | } |
---|
431 | } |
---|