1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ConsistencySubsetEval.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.RevisionHandler; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.TechnicalInformation; |
---|
31 | import weka.core.TechnicalInformationHandler; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.core.TechnicalInformation.Field; |
---|
35 | import weka.core.TechnicalInformation.Type; |
---|
36 | import weka.filters.Filter; |
---|
37 | import weka.filters.supervised.attribute.Discretize; |
---|
38 | |
---|
39 | import java.io.Serializable; |
---|
40 | import java.util.BitSet; |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Hashtable; |
---|
43 | |
---|
44 | /** |
---|
45 | <!-- globalinfo-start --> |
---|
46 | * ConsistencySubsetEval :<br/> |
---|
47 | * <br/> |
---|
48 | * Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. <br/> |
---|
49 | * <br/> |
---|
50 | * Consistency of any subset can never be lower than that of the full set of attributes, hence the usual practice is to use this subset evaluator in conjunction with a Random or Exhaustive search which looks for the smallest subset with consistency equal to that of the full set of attributes.<br/> |
---|
51 | * <br/> |
---|
52 | * For more information see:<br/> |
---|
53 | * <br/> |
---|
54 | * H. Liu, R. Setiono: A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327, 1996. |
---|
55 | * <p/> |
---|
56 | <!-- globalinfo-end --> |
---|
57 | * |
---|
58 | <!-- technical-bibtex-start --> |
---|
59 | * BibTeX: |
---|
60 | * <pre> |
---|
61 | * @inproceedings{Liu1996, |
---|
62 | * author = {H. Liu and R. Setiono}, |
---|
63 | * booktitle = {13th International Conference on Machine Learning}, |
---|
64 | * pages = {319-327}, |
---|
65 | * title = {A probabilistic approach to feature selection - A filter solution}, |
---|
66 | * year = {1996} |
---|
67 | * } |
---|
68 | * </pre> |
---|
69 | * <p/> |
---|
70 | <!-- technical-bibtex-end --> |
---|
71 | * |
---|
72 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
73 | * @version $Revision: 5447 $ |
---|
74 | * @see Discretize |
---|
75 | */ |
---|
76 | public class ConsistencySubsetEval |
---|
77 | extends ASEvaluation |
---|
78 | implements SubsetEvaluator, |
---|
79 | TechnicalInformationHandler { |
---|
80 | |
---|
81 | /** for serialization */ |
---|
82 | static final long serialVersionUID = -2880323763295270402L; |
---|
83 | |
---|
84 | /** training instances */ |
---|
85 | private Instances m_trainInstances; |
---|
86 | |
---|
87 | /** class index */ |
---|
88 | private int m_classIndex; |
---|
89 | |
---|
90 | /** number of attributes in the training data */ |
---|
91 | private int m_numAttribs; |
---|
92 | |
---|
93 | /** number of instances in the training data */ |
---|
94 | private int m_numInstances; |
---|
95 | |
---|
96 | /** Discretise numeric attributes */ |
---|
97 | private Discretize m_disTransform; |
---|
98 | |
---|
99 | /** Hash table for evaluating feature subsets */ |
---|
100 | private Hashtable m_table; |
---|
101 | |
---|
102 | /** |
---|
103 | * Class providing keys to the hash table. |
---|
104 | */ |
---|
105 | public class hashKey |
---|
106 | implements Serializable, RevisionHandler { |
---|
107 | |
---|
108 | /** for serialization */ |
---|
109 | static final long serialVersionUID = 6144138512017017408L; |
---|
110 | |
---|
111 | /** Array of attribute values for an instance */ |
---|
112 | private double [] attributes; |
---|
113 | |
---|
114 | /** True for an index if the corresponding attribute value is missing. */ |
---|
115 | private boolean [] missing; |
---|
116 | |
---|
117 | /** The key */ |
---|
118 | private int key; |
---|
119 | |
---|
120 | /** |
---|
121 | * Constructor for a hashKey |
---|
122 | * |
---|
123 | * @param t an instance from which to generate a key |
---|
124 | * @param numAtts the number of attributes |
---|
125 | * @throws Exception if something goes wrong |
---|
126 | */ |
---|
127 | public hashKey(Instance t, int numAtts) throws Exception { |
---|
128 | |
---|
129 | int i; |
---|
130 | int cindex = t.classIndex(); |
---|
131 | |
---|
132 | key = -999; |
---|
133 | attributes = new double [numAtts]; |
---|
134 | missing = new boolean [numAtts]; |
---|
135 | for (i=0;i<numAtts;i++) { |
---|
136 | if (i == cindex) { |
---|
137 | missing[i] = true; |
---|
138 | } else { |
---|
139 | if ((missing[i] = t.isMissing(i)) == false) { |
---|
140 | attributes[i] = t.value(i); |
---|
141 | } |
---|
142 | } |
---|
143 | } |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Convert a hash entry to a string |
---|
148 | * |
---|
149 | * @param t the set of instances |
---|
150 | * @param maxColWidth width to make the fields |
---|
151 | * @return the hash entry as string |
---|
152 | */ |
---|
153 | public String toString(Instances t, int maxColWidth) { |
---|
154 | |
---|
155 | int i; |
---|
156 | int cindex = t.classIndex(); |
---|
157 | StringBuffer text = new StringBuffer(); |
---|
158 | |
---|
159 | for (i=0;i<attributes.length;i++) { |
---|
160 | if (i != cindex) { |
---|
161 | if (missing[i]) { |
---|
162 | text.append("?"); |
---|
163 | for (int j=0;j<maxColWidth;j++) { |
---|
164 | text.append(" "); |
---|
165 | } |
---|
166 | } else { |
---|
167 | String ss = t.attribute(i).value((int)attributes[i]); |
---|
168 | StringBuffer sb = new StringBuffer(ss); |
---|
169 | |
---|
170 | for (int j=0;j < (maxColWidth-ss.length()+1); j++) { |
---|
171 | sb.append(" "); |
---|
172 | } |
---|
173 | text.append(sb); |
---|
174 | } |
---|
175 | } |
---|
176 | } |
---|
177 | return text.toString(); |
---|
178 | } |
---|
179 | |
---|
180 | /** |
---|
181 | * Constructor for a hashKey |
---|
182 | * |
---|
183 | * @param t an array of feature values |
---|
184 | */ |
---|
185 | public hashKey(double [] t) { |
---|
186 | |
---|
187 | int i; |
---|
188 | int l = t.length; |
---|
189 | |
---|
190 | key = -999; |
---|
191 | attributes = new double [l]; |
---|
192 | missing = new boolean [l]; |
---|
193 | for (i=0;i<l;i++) { |
---|
194 | if (t[i] == Double.MAX_VALUE) { |
---|
195 | missing[i] = true; |
---|
196 | } else { |
---|
197 | missing[i] = false; |
---|
198 | attributes[i] = t[i]; |
---|
199 | } |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | /** |
---|
204 | * Calculates a hash code |
---|
205 | * |
---|
206 | * @return the hash code as an integer |
---|
207 | */ |
---|
208 | public int hashCode() { |
---|
209 | |
---|
210 | int hv = 0; |
---|
211 | |
---|
212 | if (key != -999) |
---|
213 | return key; |
---|
214 | for (int i=0;i<attributes.length;i++) { |
---|
215 | if (missing[i]) { |
---|
216 | hv += (i*13); |
---|
217 | } else { |
---|
218 | hv += (i * 5 * (attributes[i]+1)); |
---|
219 | } |
---|
220 | } |
---|
221 | if (key == -999) { |
---|
222 | key = hv; |
---|
223 | } |
---|
224 | return hv; |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Tests if two instances are equal |
---|
229 | * |
---|
230 | * @param b a key to compare with |
---|
231 | * @return true if the objects are equal |
---|
232 | */ |
---|
233 | public boolean equals(Object b) { |
---|
234 | |
---|
235 | if ((b == null) || !(b.getClass().equals(this.getClass()))) { |
---|
236 | return false; |
---|
237 | } |
---|
238 | boolean ok = true; |
---|
239 | boolean l; |
---|
240 | if (b instanceof hashKey) { |
---|
241 | hashKey n = (hashKey)b; |
---|
242 | for (int i=0;i<attributes.length;i++) { |
---|
243 | l = n.missing[i]; |
---|
244 | if (missing[i] || l) { |
---|
245 | if ((missing[i] && !l) || (!missing[i] && l)) { |
---|
246 | ok = false; |
---|
247 | break; |
---|
248 | } |
---|
249 | } else { |
---|
250 | if (attributes[i] != n.attributes[i]) { |
---|
251 | ok = false; |
---|
252 | break; |
---|
253 | } |
---|
254 | } |
---|
255 | } |
---|
256 | } else { |
---|
257 | return false; |
---|
258 | } |
---|
259 | return ok; |
---|
260 | } |
---|
261 | |
---|
262 | /** |
---|
263 | * Prints the hash code |
---|
264 | */ |
---|
265 | public void print_hash_code() { |
---|
266 | |
---|
267 | System.out.println("Hash val: "+hashCode()); |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Returns the revision string. |
---|
272 | * |
---|
273 | * @return the revision |
---|
274 | */ |
---|
275 | public String getRevision() { |
---|
276 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
277 | } |
---|
278 | } |
---|
279 | |
---|
280 | /** |
---|
281 | * Returns a string describing this search method |
---|
282 | * @return a description of the search suitable for |
---|
283 | * displaying in the explorer/experimenter gui |
---|
284 | */ |
---|
285 | public String globalInfo() { |
---|
286 | return "ConsistencySubsetEval :\n\nEvaluates the worth of a subset of " |
---|
287 | +"attributes by the level of consistency in the class values when the " |
---|
288 | +"training instances are projected onto the subset of attributes. " |
---|
289 | +"\n\nConsistency of any subset can never be lower than that of the " |
---|
290 | +"full set of attributes, hence the usual practice is to use this " |
---|
291 | +"subset evaluator in conjunction with a Random or Exhaustive search " |
---|
292 | +"which looks for the smallest subset with consistency equal to that " |
---|
293 | +"of the full set of attributes.\n\n" |
---|
294 | + "For more information see:\n\n" |
---|
295 | + getTechnicalInformation().toString(); |
---|
296 | } |
---|
297 | |
---|
298 | /** |
---|
299 | * Returns an instance of a TechnicalInformation object, containing |
---|
300 | * detailed information about the technical background of this class, |
---|
301 | * e.g., paper reference or book this class is based on. |
---|
302 | * |
---|
303 | * @return the technical information about this class |
---|
304 | */ |
---|
305 | public TechnicalInformation getTechnicalInformation() { |
---|
306 | TechnicalInformation result; |
---|
307 | |
---|
308 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
309 | result.setValue(Field.AUTHOR, "H. Liu and R. Setiono"); |
---|
310 | result.setValue(Field.TITLE, "A probabilistic approach to feature selection - A filter solution"); |
---|
311 | result.setValue(Field.BOOKTITLE, "13th International Conference on Machine Learning"); |
---|
312 | result.setValue(Field.YEAR, "1996"); |
---|
313 | result.setValue(Field.PAGES, "319-327"); |
---|
314 | |
---|
315 | return result; |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Constructor. Calls restOptions to set default options |
---|
320 | **/ |
---|
321 | public ConsistencySubsetEval () { |
---|
322 | resetOptions(); |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * reset to defaults |
---|
327 | */ |
---|
328 | private void resetOptions () { |
---|
329 | m_trainInstances = null; |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * Returns the capabilities of this evaluator. |
---|
334 | * |
---|
335 | * @return the capabilities of this evaluator |
---|
336 | * @see Capabilities |
---|
337 | */ |
---|
338 | public Capabilities getCapabilities() { |
---|
339 | Capabilities result = super.getCapabilities(); |
---|
340 | result.disableAll(); |
---|
341 | |
---|
342 | // attributes |
---|
343 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
344 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
345 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
346 | result.enable(Capability.MISSING_VALUES); |
---|
347 | |
---|
348 | // class |
---|
349 | result.enable(Capability.NOMINAL_CLASS); |
---|
350 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
351 | |
---|
352 | return result; |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Generates a attribute evaluator. Has to initialize all fields of the |
---|
357 | * evaluator that are not being set via options. |
---|
358 | * |
---|
359 | * @param data set of instances serving as training data |
---|
360 | * @throws Exception if the evaluator has not been |
---|
361 | * generated successfully |
---|
362 | */ |
---|
363 | public void buildEvaluator (Instances data) throws Exception { |
---|
364 | |
---|
365 | // can evaluator handle data? |
---|
366 | getCapabilities().testWithFail(data); |
---|
367 | |
---|
368 | m_trainInstances = new Instances(data); |
---|
369 | m_trainInstances.deleteWithMissingClass(); |
---|
370 | m_classIndex = m_trainInstances.classIndex(); |
---|
371 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
372 | m_numInstances = m_trainInstances.numInstances(); |
---|
373 | |
---|
374 | m_disTransform = new Discretize(); |
---|
375 | m_disTransform.setUseBetterEncoding(true); |
---|
376 | m_disTransform.setInputFormat(m_trainInstances); |
---|
377 | m_trainInstances = Filter.useFilter(m_trainInstances, m_disTransform); |
---|
378 | } |
---|
379 | |
---|
380 | /** |
---|
381 | * Evaluates a subset of attributes |
---|
382 | * |
---|
383 | * @param subset a bitset representing the attribute subset to be |
---|
384 | * evaluated |
---|
385 | * @throws Exception if the subset could not be evaluated |
---|
386 | */ |
---|
387 | public double evaluateSubset (BitSet subset) throws Exception { |
---|
388 | int [] fs; |
---|
389 | int i; |
---|
390 | int count = 0; |
---|
391 | |
---|
392 | for (i=0;i<m_numAttribs;i++) { |
---|
393 | if (subset.get(i)) { |
---|
394 | count++; |
---|
395 | } |
---|
396 | } |
---|
397 | |
---|
398 | double [] instArray = new double[count]; |
---|
399 | int index = 0; |
---|
400 | fs = new int[count]; |
---|
401 | for (i=0;i<m_numAttribs;i++) { |
---|
402 | if (subset.get(i)) { |
---|
403 | fs[index++] = i; |
---|
404 | } |
---|
405 | } |
---|
406 | |
---|
407 | // create new hash table |
---|
408 | m_table = new Hashtable((int)(m_numInstances * 1.5)); |
---|
409 | |
---|
410 | for (i=0;i<m_numInstances;i++) { |
---|
411 | Instance inst = m_trainInstances.instance(i); |
---|
412 | for (int j=0;j<fs.length;j++) { |
---|
413 | if (fs[j] == m_classIndex) { |
---|
414 | throw new Exception("A subset should not contain the class!"); |
---|
415 | } |
---|
416 | if (inst.isMissing(fs[j])) { |
---|
417 | instArray[j] = Double.MAX_VALUE; |
---|
418 | } else { |
---|
419 | instArray[j] = inst.value(fs[j]); |
---|
420 | } |
---|
421 | } |
---|
422 | insertIntoTable(inst, instArray); |
---|
423 | } |
---|
424 | |
---|
425 | return consistencyCount(); |
---|
426 | } |
---|
427 | |
---|
428 | /** |
---|
429 | * calculates the level of consistency in a dataset using a subset of |
---|
430 | * features. The consistency of a hash table entry is the total number |
---|
431 | * of instances hashed to that location minus the number of instances in |
---|
432 | * the largest class hashed to that location. The total consistency is |
---|
433 | * 1.0 minus the sum of the individual consistencies divided by the |
---|
434 | * total number of instances. |
---|
435 | * @return the consistency of the hash table as a value between 0 and 1. |
---|
436 | */ |
---|
437 | private double consistencyCount() { |
---|
438 | Enumeration e = m_table.keys(); |
---|
439 | double [] classDist; |
---|
440 | double count = 0.0; |
---|
441 | |
---|
442 | while (e.hasMoreElements()) { |
---|
443 | hashKey tt = (hashKey)e.nextElement(); |
---|
444 | classDist = (double []) m_table.get(tt); |
---|
445 | count += Utils.sum(classDist); |
---|
446 | int max = Utils.maxIndex(classDist); |
---|
447 | count -= classDist[max]; |
---|
448 | } |
---|
449 | |
---|
450 | count /= (double)m_numInstances; |
---|
451 | return (1.0 - count); |
---|
452 | } |
---|
453 | |
---|
454 | /** |
---|
455 | * Inserts an instance into the hash table |
---|
456 | * |
---|
457 | * @param inst instance to be inserted |
---|
458 | * @param instA the instance to be inserted as an array of attribute |
---|
459 | * values. |
---|
460 | * @throws Exception if the instance can't be inserted |
---|
461 | */ |
---|
462 | private void insertIntoTable(Instance inst, double [] instA) |
---|
463 | throws Exception { |
---|
464 | |
---|
465 | double [] tempClassDist2; |
---|
466 | double [] newDist; |
---|
467 | hashKey thekey; |
---|
468 | |
---|
469 | thekey = new hashKey(instA); |
---|
470 | |
---|
471 | // see if this one is already in the table |
---|
472 | tempClassDist2 = (double []) m_table.get(thekey); |
---|
473 | if (tempClassDist2 == null) { |
---|
474 | newDist = new double [m_trainInstances.classAttribute().numValues()]; |
---|
475 | newDist[(int)inst.classValue()] = inst.weight(); |
---|
476 | |
---|
477 | // add to the table |
---|
478 | m_table.put(thekey, newDist); |
---|
479 | } else { |
---|
480 | // update the distribution for this instance |
---|
481 | tempClassDist2[(int)inst.classValue()]+=inst.weight(); |
---|
482 | |
---|
483 | // update the table |
---|
484 | m_table.put(thekey, tempClassDist2); |
---|
485 | } |
---|
486 | } |
---|
487 | |
---|
488 | /** |
---|
489 | * returns a description of the evaluator |
---|
490 | * @return a description of the evaluator as a String. |
---|
491 | */ |
---|
492 | public String toString() { |
---|
493 | StringBuffer text = new StringBuffer(); |
---|
494 | |
---|
495 | if (m_trainInstances == null) { |
---|
496 | text.append("\tConsistency subset evaluator has not been built yet\n"); |
---|
497 | } |
---|
498 | else { |
---|
499 | text.append("\tConsistency Subset Evaluator\n"); |
---|
500 | } |
---|
501 | |
---|
502 | return text.toString(); |
---|
503 | } |
---|
504 | |
---|
505 | /** |
---|
506 | * Returns the revision string. |
---|
507 | * |
---|
508 | * @return the revision |
---|
509 | */ |
---|
510 | public String getRevision() { |
---|
511 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
512 | } |
---|
513 | |
---|
514 | /** |
---|
515 | * Main method for testing this class. |
---|
516 | * |
---|
517 | * @param args the options |
---|
518 | */ |
---|
519 | public static void main (String[] args) { |
---|
520 | runEvaluator(new ConsistencySubsetEval(), args); |
---|
521 | } |
---|
522 | } |
---|