[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * CheckAttributeSelection.java |
---|
| 19 | * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.CheckScheme; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.SerializationHelper; |
---|
| 34 | import weka.core.SerializedObject; |
---|
| 35 | import weka.core.TestInstances; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.WeightedInstancesHandler; |
---|
| 38 | |
---|
| 39 | import java.util.Enumeration; |
---|
| 40 | import java.util.Random; |
---|
| 41 | import java.util.Vector; |
---|
| 42 | |
---|
| 43 | /** |
---|
| 44 | * Class for examining the capabilities and finding problems with |
---|
| 45 | * attribute selection schemes. If you implement an attribute selection using |
---|
| 46 | * the WEKA.libraries, you should run the checks on it to ensure robustness |
---|
| 47 | * and correct operation. Passing all the tests of this object does not mean |
---|
| 48 | * bugs in the attribute selection don't exist, but this will help find some |
---|
| 49 | * common ones. <p/> |
---|
| 50 | * |
---|
| 51 | * Typical usage: <p/> |
---|
| 52 | * <code>java weka.attributeSelection.CheckAttributeSelection -W ASscheme_name |
---|
| 53 | * -- ASscheme_options </code><p/> |
---|
| 54 | * |
---|
| 55 | * CheckAttributeSelection reports on the following: |
---|
| 56 | * <ul> |
---|
| 57 | * <li> Scheme abilities |
---|
| 58 | * <ul> |
---|
| 59 | * <li> Possible command line options to the scheme </li> |
---|
| 60 | * <li> Whether the scheme can predict nominal, numeric, string, |
---|
| 61 | * date or relational class attributes. </li> |
---|
| 62 | * <li> Whether the scheme can handle numeric predictor attributes </li> |
---|
| 63 | * <li> Whether the scheme can handle nominal predictor attributes </li> |
---|
| 64 | * <li> Whether the scheme can handle string predictor attributes </li> |
---|
| 65 | * <li> Whether the scheme can handle date predictor attributes </li> |
---|
| 66 | * <li> Whether the scheme can handle relational predictor attributes </li> |
---|
| 67 | * <li> Whether the scheme can handle multi-instance data </li> |
---|
| 68 | * <li> Whether the scheme can handle missing predictor values </li> |
---|
| 69 | * <li> Whether the scheme can handle missing class values </li> |
---|
| 70 | * <li> Whether a nominal scheme only handles 2 class problems </li> |
---|
| 71 | * <li> Whether the scheme can handle instance weights </li> |
---|
| 72 | * </ul> |
---|
| 73 | * </li> |
---|
| 74 | * <li> Correct functioning |
---|
| 75 | * <ul> |
---|
| 76 | * <li> Correct initialisation during search (i.e. no result |
---|
| 77 | * changes when search is performed repeatedly) </li> |
---|
| 78 | * <li> Whether the scheme alters the data pased to it |
---|
| 79 | * (number of instances, instance order, instance weights, etc) </li> |
---|
| 80 | * </ul> |
---|
| 81 | * </li> |
---|
| 82 | * <li> Degenerate cases |
---|
| 83 | * <ul> |
---|
| 84 | * <li> building scheme with zero instances </li> |
---|
| 85 | * <li> all but one predictor attribute values missing </li> |
---|
| 86 | * <li> all predictor attribute values missing </li> |
---|
| 87 | * <li> all but one class values missing </li> |
---|
| 88 | * <li> all class values missing </li> |
---|
| 89 | * </ul> |
---|
| 90 | * </li> |
---|
| 91 | * </ul> |
---|
| 92 | * Running CheckAttributeSelection with the debug option set will output the |
---|
| 93 | * training dataset for any failed tests.<p/> |
---|
| 94 | * |
---|
| 95 | * The <code>weka.attributeSelection.AbstractAttributeSelectionTest</code> |
---|
| 96 | * uses this class to test all the schemes. Any changes here, have to be |
---|
| 97 | * checked in that abstract test class, too. <p/> |
---|
| 98 | * |
---|
| 99 | <!-- options-start --> |
---|
| 100 | * Valid options are: <p/> |
---|
| 101 | * |
---|
| 102 | * <pre> -D |
---|
| 103 | * Turn on debugging output.</pre> |
---|
| 104 | * |
---|
| 105 | * <pre> -S |
---|
| 106 | * Silent mode - prints nothing to stdout.</pre> |
---|
| 107 | * |
---|
| 108 | * <pre> -N <num> |
---|
| 109 | * The number of instances in the datasets (default 20).</pre> |
---|
| 110 | * |
---|
| 111 | * <pre> -nominal <num> |
---|
| 112 | * The number of nominal attributes (default 2).</pre> |
---|
| 113 | * |
---|
| 114 | * <pre> -nominal-values <num> |
---|
| 115 | * The number of values for nominal attributes (default 1).</pre> |
---|
| 116 | * |
---|
| 117 | * <pre> -numeric <num> |
---|
| 118 | * The number of numeric attributes (default 1).</pre> |
---|
| 119 | * |
---|
| 120 | * <pre> -string <num> |
---|
| 121 | * The number of string attributes (default 1).</pre> |
---|
| 122 | * |
---|
| 123 | * <pre> -date <num> |
---|
| 124 | * The number of date attributes (default 1).</pre> |
---|
| 125 | * |
---|
| 126 | * <pre> -relational <num> |
---|
| 127 | * The number of relational attributes (default 1).</pre> |
---|
| 128 | * |
---|
| 129 | * <pre> -num-instances-relational <num> |
---|
| 130 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
| 131 | * |
---|
| 132 | * <pre> -words <comma-separated-list> |
---|
| 133 | * The words to use in string attributes.</pre> |
---|
| 134 | * |
---|
| 135 | * <pre> -word-separators <chars> |
---|
| 136 | * The word separators to use in string attributes.</pre> |
---|
| 137 | * |
---|
| 138 | * <pre> -eval name [options] |
---|
| 139 | * Full name and options of the evaluator analyzed. |
---|
| 140 | * eg: weka.attributeSelection.CfsSubsetEval</pre> |
---|
| 141 | * |
---|
| 142 | * <pre> -search name [options] |
---|
| 143 | * Full name and options of the search method analyzed. |
---|
| 144 | * eg: weka.attributeSelection.Ranker</pre> |
---|
| 145 | * |
---|
| 146 | * <pre> -test <eval|search> |
---|
| 147 | * The scheme to test, either the evaluator or the search method. |
---|
| 148 | * (Default: eval)</pre> |
---|
| 149 | * |
---|
| 150 | * <pre> |
---|
| 151 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
| 152 | * </pre> |
---|
| 153 | * |
---|
| 154 | * <pre> -M |
---|
| 155 | * Treat missing values as a seperate value.</pre> |
---|
| 156 | * |
---|
| 157 | * <pre> -L |
---|
| 158 | * Don't include locally predictive attributes.</pre> |
---|
| 159 | * |
---|
| 160 | * <pre> |
---|
| 161 | * Options specific to search method weka.attributeSelection.Ranker: |
---|
| 162 | * </pre> |
---|
| 163 | * |
---|
| 164 | * <pre> -P <start set> |
---|
| 165 | * Specify a starting set of attributes. |
---|
| 166 | * Eg. 1,3,5-7. |
---|
| 167 | * Any starting attributes specified are |
---|
| 168 | * ignored during the ranking.</pre> |
---|
| 169 | * |
---|
| 170 | * <pre> -T <threshold> |
---|
| 171 | * Specify a theshold by which attributes |
---|
| 172 | * may be discarded from the ranking.</pre> |
---|
| 173 | * |
---|
| 174 | * <pre> -N <num to select> |
---|
| 175 | * Specify number of attributes to select</pre> |
---|
| 176 | * |
---|
| 177 | <!-- options-end --> |
---|
| 178 | * |
---|
| 179 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 180 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
| 181 | * @version $Revision: 4783 $ |
---|
| 182 | * @see TestInstances |
---|
| 183 | */ |
---|
| 184 | public class CheckAttributeSelection |
---|
| 185 | extends CheckScheme { |
---|
| 186 | |
---|
| 187 | /* |
---|
| 188 | * Note about test methods: |
---|
| 189 | * - methods return array of booleans |
---|
| 190 | * - first index: success or not |
---|
| 191 | * - second index: acceptable or not (e.g., Exception is OK) |
---|
| 192 | * |
---|
| 193 | * FracPete (fracpete at waikato dot ac dot nz) |
---|
| 194 | */ |
---|
| 195 | |
---|
| 196 | /*** The evaluator to be examined */ |
---|
| 197 | protected ASEvaluation m_Evaluator = new CfsSubsetEval(); |
---|
| 198 | |
---|
| 199 | /*** The search method to be used */ |
---|
| 200 | protected ASSearch m_Search = new Ranker(); |
---|
| 201 | |
---|
| 202 | /** whether to test the evaluator (default) or the search method */ |
---|
| 203 | protected boolean m_TestEvaluator = true; |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Returns an enumeration describing the available options. |
---|
| 207 | * |
---|
| 208 | * @return an enumeration of all the available options. |
---|
| 209 | */ |
---|
| 210 | public Enumeration listOptions() { |
---|
| 211 | Vector result = new Vector(); |
---|
| 212 | |
---|
| 213 | Enumeration en = super.listOptions(); |
---|
| 214 | while (en.hasMoreElements()) |
---|
| 215 | result.addElement(en.nextElement()); |
---|
| 216 | |
---|
| 217 | result.addElement(new Option( |
---|
| 218 | "\tFull name and options of the evaluator analyzed.\n" |
---|
| 219 | +"\teg: weka.attributeSelection.CfsSubsetEval", |
---|
| 220 | "eval", 1, "-eval name [options]")); |
---|
| 221 | |
---|
| 222 | result.addElement(new Option( |
---|
| 223 | "\tFull name and options of the search method analyzed.\n" |
---|
| 224 | +"\teg: weka.attributeSelection.Ranker", |
---|
| 225 | "search", 1, "-search name [options]")); |
---|
| 226 | |
---|
| 227 | result.addElement(new Option( |
---|
| 228 | "\tThe scheme to test, either the evaluator or the search method.\n" |
---|
| 229 | +"\t(Default: eval)", |
---|
| 230 | "test", 1, "-test <eval|search>")); |
---|
| 231 | |
---|
| 232 | if ((m_Evaluator != null) && (m_Evaluator instanceof OptionHandler)) { |
---|
| 233 | result.addElement(new Option("", "", 0, |
---|
| 234 | "\nOptions specific to evaluator " |
---|
| 235 | + m_Evaluator.getClass().getName() |
---|
| 236 | + ":")); |
---|
| 237 | Enumeration enm = ((OptionHandler) m_Evaluator).listOptions(); |
---|
| 238 | while (enm.hasMoreElements()) |
---|
| 239 | result.addElement(enm.nextElement()); |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | if ((m_Search != null) && (m_Search instanceof OptionHandler)) { |
---|
| 243 | result.addElement(new Option("", "", 0, |
---|
| 244 | "\nOptions specific to search method " |
---|
| 245 | + m_Search.getClass().getName() |
---|
| 246 | + ":")); |
---|
| 247 | Enumeration enm = ((OptionHandler) m_Search).listOptions(); |
---|
| 248 | while (enm.hasMoreElements()) |
---|
| 249 | result.addElement(enm.nextElement()); |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | return result.elements(); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | /** |
---|
| 256 | * Parses a given list of options. <p/> |
---|
| 257 | * |
---|
| 258 | <!-- options-start --> |
---|
| 259 | * Valid options are: <p/> |
---|
| 260 | * |
---|
| 261 | * <pre> -D |
---|
| 262 | * Turn on debugging output.</pre> |
---|
| 263 | * |
---|
| 264 | * <pre> -S |
---|
| 265 | * Silent mode - prints nothing to stdout.</pre> |
---|
| 266 | * |
---|
| 267 | * <pre> -N <num> |
---|
| 268 | * The number of instances in the datasets (default 20).</pre> |
---|
| 269 | * |
---|
| 270 | * <pre> -nominal <num> |
---|
| 271 | * The number of nominal attributes (default 2).</pre> |
---|
| 272 | * |
---|
| 273 | * <pre> -nominal-values <num> |
---|
| 274 | * The number of values for nominal attributes (default 1).</pre> |
---|
| 275 | * |
---|
| 276 | * <pre> -numeric <num> |
---|
| 277 | * The number of numeric attributes (default 1).</pre> |
---|
| 278 | * |
---|
| 279 | * <pre> -string <num> |
---|
| 280 | * The number of string attributes (default 1).</pre> |
---|
| 281 | * |
---|
| 282 | * <pre> -date <num> |
---|
| 283 | * The number of date attributes (default 1).</pre> |
---|
| 284 | * |
---|
| 285 | * <pre> -relational <num> |
---|
| 286 | * The number of relational attributes (default 1).</pre> |
---|
| 287 | * |
---|
| 288 | * <pre> -num-instances-relational <num> |
---|
| 289 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
| 290 | * |
---|
| 291 | * <pre> -words <comma-separated-list> |
---|
| 292 | * The words to use in string attributes.</pre> |
---|
| 293 | * |
---|
| 294 | * <pre> -word-separators <chars> |
---|
| 295 | * The word separators to use in string attributes.</pre> |
---|
| 296 | * |
---|
| 297 | * <pre> -eval name [options] |
---|
| 298 | * Full name and options of the evaluator analyzed. |
---|
| 299 | * eg: weka.attributeSelection.CfsSubsetEval</pre> |
---|
| 300 | * |
---|
| 301 | * <pre> -search name [options] |
---|
| 302 | * Full name and options of the search method analyzed. |
---|
| 303 | * eg: weka.attributeSelection.Ranker</pre> |
---|
| 304 | * |
---|
| 305 | * <pre> -test <eval|search> |
---|
| 306 | * The scheme to test, either the evaluator or the search method. |
---|
| 307 | * (Default: eval)</pre> |
---|
| 308 | * |
---|
| 309 | * <pre> |
---|
| 310 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
| 311 | * </pre> |
---|
| 312 | * |
---|
| 313 | * <pre> -M |
---|
| 314 | * Treat missing values as a seperate value.</pre> |
---|
| 315 | * |
---|
| 316 | * <pre> -L |
---|
| 317 | * Don't include locally predictive attributes.</pre> |
---|
| 318 | * |
---|
| 319 | * <pre> |
---|
| 320 | * Options specific to search method weka.attributeSelection.Ranker: |
---|
| 321 | * </pre> |
---|
| 322 | * |
---|
| 323 | * <pre> -P <start set> |
---|
| 324 | * Specify a starting set of attributes. |
---|
| 325 | * Eg. 1,3,5-7. |
---|
| 326 | * Any starting attributes specified are |
---|
| 327 | * ignored during the ranking.</pre> |
---|
| 328 | * |
---|
| 329 | * <pre> -T <threshold> |
---|
| 330 | * Specify a theshold by which attributes |
---|
| 331 | * may be discarded from the ranking.</pre> |
---|
| 332 | * |
---|
| 333 | * <pre> -N <num to select> |
---|
| 334 | * Specify number of attributes to select</pre> |
---|
| 335 | * |
---|
| 336 | <!-- options-end --> |
---|
| 337 | * |
---|
| 338 | * @param options the list of options as an array of strings |
---|
| 339 | * @throws Exception if an option is not supported |
---|
| 340 | */ |
---|
| 341 | public void setOptions(String[] options) throws Exception { |
---|
| 342 | String tmpStr; |
---|
| 343 | String[] tmpOptions; |
---|
| 344 | |
---|
| 345 | super.setOptions(options); |
---|
| 346 | |
---|
| 347 | tmpStr = Utils.getOption("eval", options); |
---|
| 348 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
| 349 | if (tmpOptions.length != 0) { |
---|
| 350 | tmpStr = tmpOptions[0]; |
---|
| 351 | tmpOptions[0] = ""; |
---|
| 352 | setEvaluator( |
---|
| 353 | (ASEvaluation) forName( |
---|
| 354 | "weka.attributeSelection", |
---|
| 355 | ASEvaluation.class, |
---|
| 356 | tmpStr, |
---|
| 357 | tmpOptions)); |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | tmpStr = Utils.getOption("search", options); |
---|
| 361 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
| 362 | if (tmpOptions.length != 0) { |
---|
| 363 | tmpStr = tmpOptions[0]; |
---|
| 364 | tmpOptions[0] = ""; |
---|
| 365 | setSearch( |
---|
| 366 | (ASSearch) forName( |
---|
| 367 | "weka.attributeSelection", |
---|
| 368 | ASSearch.class, |
---|
| 369 | tmpStr, |
---|
| 370 | tmpOptions)); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | tmpStr = Utils.getOption("test", options); |
---|
| 374 | setTestEvaluator(!tmpStr.equalsIgnoreCase("search")); |
---|
| 375 | } |
---|
| 376 | |
---|
| 377 | /** |
---|
| 378 | * Gets the current settings of the CheckAttributeSelection. |
---|
| 379 | * |
---|
| 380 | * @return an array of strings suitable for passing to setOptions |
---|
| 381 | */ |
---|
| 382 | public String[] getOptions() { |
---|
| 383 | Vector result; |
---|
| 384 | String[] options; |
---|
| 385 | int i; |
---|
| 386 | |
---|
| 387 | result = new Vector(); |
---|
| 388 | |
---|
| 389 | options = super.getOptions(); |
---|
| 390 | for (i = 0; i < options.length; i++) |
---|
| 391 | result.add(options[i]); |
---|
| 392 | |
---|
| 393 | result.add("-eval"); |
---|
| 394 | if (getEvaluator() instanceof OptionHandler) |
---|
| 395 | result.add( |
---|
| 396 | getEvaluator().getClass().getName() |
---|
| 397 | + " " |
---|
| 398 | + Utils.joinOptions(((OptionHandler) getEvaluator()).getOptions())); |
---|
| 399 | else |
---|
| 400 | result.add( |
---|
| 401 | getEvaluator().getClass().getName()); |
---|
| 402 | |
---|
| 403 | result.add("-search"); |
---|
| 404 | if (getSearch() instanceof OptionHandler) |
---|
| 405 | result.add( |
---|
| 406 | getSearch().getClass().getName() |
---|
| 407 | + " " |
---|
| 408 | + Utils.joinOptions(((OptionHandler) getSearch()).getOptions())); |
---|
| 409 | else |
---|
| 410 | result.add( |
---|
| 411 | getSearch().getClass().getName()); |
---|
| 412 | |
---|
| 413 | result.add("-test"); |
---|
| 414 | if (getTestEvaluator()) |
---|
| 415 | result.add("eval"); |
---|
| 416 | else |
---|
| 417 | result.add("search"); |
---|
| 418 | |
---|
| 419 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | /** |
---|
| 423 | * Begin the tests, reporting results to System.out |
---|
| 424 | */ |
---|
| 425 | public void doTests() { |
---|
| 426 | |
---|
| 427 | if (getTestObject() == null) { |
---|
| 428 | println("\n=== No scheme set ==="); |
---|
| 429 | return; |
---|
| 430 | } |
---|
| 431 | println("\n=== Check on scheme: " |
---|
| 432 | + getTestObject().getClass().getName() |
---|
| 433 | + " ===\n"); |
---|
| 434 | |
---|
| 435 | // Start tests |
---|
| 436 | m_ClasspathProblems = false; |
---|
| 437 | println("--> Checking for interfaces"); |
---|
| 438 | canTakeOptions(); |
---|
| 439 | boolean weightedInstancesHandler = weightedInstancesHandler()[0]; |
---|
| 440 | boolean multiInstanceHandler = multiInstanceHandler()[0]; |
---|
| 441 | println("--> Scheme tests"); |
---|
| 442 | declaresSerialVersionUID(); |
---|
| 443 | testsPerClassType(Attribute.NOMINAL, weightedInstancesHandler, multiInstanceHandler); |
---|
| 444 | testsPerClassType(Attribute.NUMERIC, weightedInstancesHandler, multiInstanceHandler); |
---|
| 445 | testsPerClassType(Attribute.DATE, weightedInstancesHandler, multiInstanceHandler); |
---|
| 446 | testsPerClassType(Attribute.STRING, weightedInstancesHandler, multiInstanceHandler); |
---|
| 447 | testsPerClassType(Attribute.RELATIONAL, weightedInstancesHandler, multiInstanceHandler); |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | /** |
---|
| 451 | * Set the evaluator to test. |
---|
| 452 | * |
---|
| 453 | * @param value the evaluator to use. |
---|
| 454 | */ |
---|
| 455 | public void setEvaluator(ASEvaluation value) { |
---|
| 456 | m_Evaluator = value; |
---|
| 457 | } |
---|
| 458 | |
---|
| 459 | /** |
---|
| 460 | * Get the current evaluator |
---|
| 461 | * |
---|
| 462 | * @return the current evaluator |
---|
| 463 | */ |
---|
| 464 | public ASEvaluation getEvaluator() { |
---|
| 465 | return m_Evaluator; |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | /** |
---|
| 469 | * Set the search method to test. |
---|
| 470 | * |
---|
| 471 | * @param value the search method to use. |
---|
| 472 | */ |
---|
| 473 | public void setSearch(ASSearch value) { |
---|
| 474 | m_Search = value; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** |
---|
| 478 | * Get the current search method |
---|
| 479 | * |
---|
| 480 | * @return the current search method |
---|
| 481 | */ |
---|
| 482 | public ASSearch getSearch() { |
---|
| 483 | return m_Search; |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | /** |
---|
| 487 | * Sets whether the evaluator or the search method is being tested. |
---|
| 488 | * |
---|
| 489 | * @param value if true then the evaluator will be tested |
---|
| 490 | */ |
---|
| 491 | public void setTestEvaluator(boolean value) { |
---|
| 492 | m_TestEvaluator = value; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Gets whether the evaluator is being tested or the search method. |
---|
| 497 | * |
---|
| 498 | * @return true if the evaluator is being tested |
---|
| 499 | */ |
---|
| 500 | public boolean getTestEvaluator() { |
---|
| 501 | return m_TestEvaluator; |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | /** |
---|
| 505 | * returns either the evaluator or the search method. |
---|
| 506 | * |
---|
| 507 | * @return the object to be tested |
---|
| 508 | * @see #m_TestEvaluator |
---|
| 509 | */ |
---|
| 510 | protected Object getTestObject() { |
---|
| 511 | if (getTestEvaluator()) |
---|
| 512 | return getEvaluator(); |
---|
| 513 | else |
---|
| 514 | return getSearch(); |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | /** |
---|
| 518 | * returns deep copies of the given object |
---|
| 519 | * |
---|
| 520 | * @param obj the object to copy |
---|
| 521 | * @param num the number of copies |
---|
| 522 | * @return the deep copies |
---|
| 523 | * @throws Exception if copying fails |
---|
| 524 | */ |
---|
| 525 | protected Object[] makeCopies(Object obj, int num) throws Exception { |
---|
| 526 | if (obj == null) |
---|
| 527 | throw new Exception("No object set"); |
---|
| 528 | |
---|
| 529 | Object[] objs = new Object[num]; |
---|
| 530 | SerializedObject so = new SerializedObject(obj); |
---|
| 531 | for(int i = 0; i < objs.length; i++) { |
---|
| 532 | objs[i] = so.getObject(); |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | return objs; |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | /** |
---|
| 539 | * Performs a attribute selection with the given search and evaluation scheme |
---|
| 540 | * on the provided data. The generated AttributeSelection object is returned. |
---|
| 541 | * |
---|
| 542 | * @param search the search scheme to use |
---|
| 543 | * @param eval the evaluator to use |
---|
| 544 | * @param data the data to work on |
---|
| 545 | * @return the used attribute selection object |
---|
| 546 | * @throws Exception if the attribute selection fails |
---|
| 547 | */ |
---|
| 548 | protected AttributeSelection search(ASSearch search, ASEvaluation eval, |
---|
| 549 | Instances data) throws Exception { |
---|
| 550 | |
---|
| 551 | AttributeSelection result; |
---|
| 552 | |
---|
| 553 | result = new AttributeSelection(); |
---|
| 554 | result.setSeed(42); |
---|
| 555 | result.setSearch(search); |
---|
| 556 | result.setEvaluator(eval); |
---|
| 557 | result.SelectAttributes(data); |
---|
| 558 | |
---|
| 559 | return result; |
---|
| 560 | } |
---|
| 561 | |
---|
| 562 | /** |
---|
| 563 | * Run a battery of tests for a given class attribute type |
---|
| 564 | * |
---|
| 565 | * @param classType true if the class attribute should be numeric |
---|
| 566 | * @param weighted true if the scheme says it handles weights |
---|
| 567 | * @param multiInstance true if the scheme handles multi-instance data |
---|
| 568 | */ |
---|
| 569 | protected void testsPerClassType(int classType, |
---|
| 570 | boolean weighted, |
---|
| 571 | boolean multiInstance) { |
---|
| 572 | |
---|
| 573 | boolean PNom = canPredict(true, false, false, false, false, multiInstance, classType)[0]; |
---|
| 574 | boolean PNum = canPredict(false, true, false, false, false, multiInstance, classType)[0]; |
---|
| 575 | boolean PStr = canPredict(false, false, true, false, false, multiInstance, classType)[0]; |
---|
| 576 | boolean PDat = canPredict(false, false, false, true, false, multiInstance, classType)[0]; |
---|
| 577 | boolean PRel; |
---|
| 578 | if (!multiInstance) |
---|
| 579 | PRel = canPredict(false, false, false, false, true, multiInstance, classType)[0]; |
---|
| 580 | else |
---|
| 581 | PRel = false; |
---|
| 582 | |
---|
| 583 | if (PNom || PNum || PStr || PDat || PRel) { |
---|
| 584 | if (weighted) |
---|
| 585 | instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 586 | |
---|
| 587 | if (classType == Attribute.NOMINAL) |
---|
| 588 | canHandleNClasses(PNom, PNum, PStr, PDat, PRel, multiInstance, 4); |
---|
| 589 | |
---|
| 590 | if (!multiInstance) { |
---|
| 591 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 0); |
---|
| 592 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 1); |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 596 | boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
| 597 | multiInstance, classType, |
---|
| 598 | true, false, 20)[0]; |
---|
| 599 | if (handleMissingPredictors) |
---|
| 600 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, true, false, 100); |
---|
| 601 | |
---|
| 602 | boolean handleMissingClass = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
| 603 | multiInstance, classType, |
---|
| 604 | false, true, 20)[0]; |
---|
| 605 | if (handleMissingClass) |
---|
| 606 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, false, true, 100); |
---|
| 607 | |
---|
| 608 | correctSearchInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
| 609 | datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, |
---|
| 610 | handleMissingPredictors, handleMissingClass); |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | /** |
---|
| 615 | * Checks whether the scheme can take command line options. |
---|
| 616 | * |
---|
| 617 | * @return index 0 is true if the scheme can take options |
---|
| 618 | */ |
---|
| 619 | protected boolean[] canTakeOptions() { |
---|
| 620 | |
---|
| 621 | boolean[] result = new boolean[2]; |
---|
| 622 | |
---|
| 623 | print("options..."); |
---|
| 624 | if (getTestObject() instanceof OptionHandler) { |
---|
| 625 | println("yes"); |
---|
| 626 | if (m_Debug) { |
---|
| 627 | println("\n=== Full report ==="); |
---|
| 628 | Enumeration enu = ((OptionHandler) getTestObject()).listOptions(); |
---|
| 629 | while (enu.hasMoreElements()) { |
---|
| 630 | Option option = (Option) enu.nextElement(); |
---|
| 631 | print(option.synopsis() + "\n" |
---|
| 632 | + option.description() + "\n"); |
---|
| 633 | } |
---|
| 634 | println("\n"); |
---|
| 635 | } |
---|
| 636 | result[0] = true; |
---|
| 637 | } |
---|
| 638 | else { |
---|
| 639 | println("no"); |
---|
| 640 | result[0] = false; |
---|
| 641 | } |
---|
| 642 | |
---|
| 643 | return result; |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | /** |
---|
| 647 | * Checks whether the scheme says it can handle instance weights. |
---|
| 648 | * |
---|
| 649 | * @return true if the scheme handles instance weights |
---|
| 650 | */ |
---|
| 651 | protected boolean[] weightedInstancesHandler() { |
---|
| 652 | |
---|
| 653 | boolean[] result = new boolean[2]; |
---|
| 654 | |
---|
| 655 | print("weighted instances scheme..."); |
---|
| 656 | if (getTestObject() instanceof WeightedInstancesHandler) { |
---|
| 657 | println("yes"); |
---|
| 658 | result[0] = true; |
---|
| 659 | } |
---|
| 660 | else { |
---|
| 661 | println("no"); |
---|
| 662 | result[0] = false; |
---|
| 663 | } |
---|
| 664 | |
---|
| 665 | return result; |
---|
| 666 | } |
---|
| 667 | |
---|
| 668 | /** |
---|
| 669 | * Checks whether the scheme handles multi-instance data. |
---|
| 670 | * |
---|
| 671 | * @return true if the scheme handles multi-instance data |
---|
| 672 | */ |
---|
| 673 | protected boolean[] multiInstanceHandler() { |
---|
| 674 | boolean[] result = new boolean[2]; |
---|
| 675 | |
---|
| 676 | print("multi-instance scheme..."); |
---|
| 677 | if (getTestObject() instanceof MultiInstanceCapabilitiesHandler) { |
---|
| 678 | println("yes"); |
---|
| 679 | result[0] = true; |
---|
| 680 | } |
---|
| 681 | else { |
---|
| 682 | println("no"); |
---|
| 683 | result[0] = false; |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | return result; |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | /** |
---|
| 690 | * tests for a serialVersionUID. Fails in case the schemes don't declare |
---|
| 691 | * a UID (both must!). |
---|
| 692 | * |
---|
| 693 | * @return index 0 is true if the scheme declares a UID |
---|
| 694 | */ |
---|
| 695 | protected boolean[] declaresSerialVersionUID() { |
---|
| 696 | boolean[] result = new boolean[2]; |
---|
| 697 | boolean eval; |
---|
| 698 | boolean search; |
---|
| 699 | |
---|
| 700 | print("serialVersionUID..."); |
---|
| 701 | |
---|
| 702 | eval = !SerializationHelper.needsUID(m_Evaluator.getClass()); |
---|
| 703 | search = !SerializationHelper.needsUID(m_Search.getClass()); |
---|
| 704 | |
---|
| 705 | result[0] = eval && search; |
---|
| 706 | |
---|
| 707 | if (result[0]) |
---|
| 708 | println("yes"); |
---|
| 709 | else |
---|
| 710 | println("no"); |
---|
| 711 | |
---|
| 712 | return result; |
---|
| 713 | } |
---|
| 714 | |
---|
| 715 | /** |
---|
| 716 | * Checks basic prediction of the scheme, for simple non-troublesome |
---|
| 717 | * datasets. |
---|
| 718 | * |
---|
| 719 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 720 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 721 | * @param stringPredictor if true use string predictor attributes |
---|
| 722 | * @param datePredictor if true use date predictor attributes |
---|
| 723 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 724 | * @param multiInstance whether multi-instance is needed |
---|
| 725 | * @param classType the class type (NOMINAL, NUMERIC, etc.) |
---|
| 726 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 727 | * was acceptable |
---|
| 728 | */ |
---|
| 729 | protected boolean[] canPredict( |
---|
| 730 | boolean nominalPredictor, |
---|
| 731 | boolean numericPredictor, |
---|
| 732 | boolean stringPredictor, |
---|
| 733 | boolean datePredictor, |
---|
| 734 | boolean relationalPredictor, |
---|
| 735 | boolean multiInstance, |
---|
| 736 | int classType) { |
---|
| 737 | |
---|
| 738 | print("basic predict"); |
---|
| 739 | printAttributeSummary( |
---|
| 740 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 741 | print("..."); |
---|
| 742 | FastVector accepts = new FastVector(); |
---|
| 743 | accepts.addElement("unary"); |
---|
| 744 | accepts.addElement("binary"); |
---|
| 745 | accepts.addElement("nominal"); |
---|
| 746 | accepts.addElement("numeric"); |
---|
| 747 | accepts.addElement("string"); |
---|
| 748 | accepts.addElement("date"); |
---|
| 749 | accepts.addElement("relational"); |
---|
| 750 | accepts.addElement("multi-instance"); |
---|
| 751 | accepts.addElement("not in classpath"); |
---|
| 752 | int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0; |
---|
| 753 | boolean predictorMissing = false, classMissing = false; |
---|
| 754 | |
---|
| 755 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 756 | datePredictor, relationalPredictor, |
---|
| 757 | multiInstance, |
---|
| 758 | classType, |
---|
| 759 | missingLevel, predictorMissing, classMissing, |
---|
| 760 | numTrain, numClasses, |
---|
| 761 | accepts); |
---|
| 762 | } |
---|
| 763 | |
---|
| 764 | /** |
---|
| 765 | * Checks whether nominal schemes can handle more than two classes. |
---|
| 766 | * If a scheme is only designed for two-class problems it should |
---|
| 767 | * throw an appropriate exception for multi-class problems. |
---|
| 768 | * |
---|
| 769 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 770 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 771 | * @param stringPredictor if true use string predictor attributes |
---|
| 772 | * @param datePredictor if true use date predictor attributes |
---|
| 773 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 774 | * @param multiInstance whether multi-instance is needed |
---|
| 775 | * @param numClasses the number of classes to test |
---|
| 776 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 777 | * was acceptable |
---|
| 778 | */ |
---|
| 779 | protected boolean[] canHandleNClasses( |
---|
| 780 | boolean nominalPredictor, |
---|
| 781 | boolean numericPredictor, |
---|
| 782 | boolean stringPredictor, |
---|
| 783 | boolean datePredictor, |
---|
| 784 | boolean relationalPredictor, |
---|
| 785 | boolean multiInstance, |
---|
| 786 | int numClasses) { |
---|
| 787 | |
---|
| 788 | print("more than two class problems"); |
---|
| 789 | printAttributeSummary( |
---|
| 790 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL); |
---|
| 791 | print("..."); |
---|
| 792 | FastVector accepts = new FastVector(); |
---|
| 793 | accepts.addElement("number"); |
---|
| 794 | accepts.addElement("class"); |
---|
| 795 | int numTrain = getNumInstances(), missingLevel = 0; |
---|
| 796 | boolean predictorMissing = false, classMissing = false; |
---|
| 797 | |
---|
| 798 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 799 | datePredictor, relationalPredictor, |
---|
| 800 | multiInstance, |
---|
| 801 | Attribute.NOMINAL, |
---|
| 802 | missingLevel, predictorMissing, classMissing, |
---|
| 803 | numTrain, numClasses, |
---|
| 804 | accepts); |
---|
| 805 | } |
---|
| 806 | |
---|
| 807 | /** |
---|
| 808 | * Checks whether the scheme can handle class attributes as Nth attribute. |
---|
| 809 | * |
---|
| 810 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 811 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 812 | * @param stringPredictor if true use string predictor attributes |
---|
| 813 | * @param datePredictor if true use date predictor attributes |
---|
| 814 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 815 | * @param multiInstance whether multi-instance is needed |
---|
| 816 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 817 | * @param classIndex the index of the class attribute (0-based, -1 means last attribute) |
---|
| 818 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 819 | * was acceptable |
---|
| 820 | * @see TestInstances#CLASS_IS_LAST |
---|
| 821 | */ |
---|
| 822 | protected boolean[] canHandleClassAsNthAttribute( |
---|
| 823 | boolean nominalPredictor, |
---|
| 824 | boolean numericPredictor, |
---|
| 825 | boolean stringPredictor, |
---|
| 826 | boolean datePredictor, |
---|
| 827 | boolean relationalPredictor, |
---|
| 828 | boolean multiInstance, |
---|
| 829 | int classType, |
---|
| 830 | int classIndex) { |
---|
| 831 | |
---|
| 832 | if (classIndex == TestInstances.CLASS_IS_LAST) |
---|
| 833 | print("class attribute as last attribute"); |
---|
| 834 | else |
---|
| 835 | print("class attribute as " + (classIndex + 1) + ". attribute"); |
---|
| 836 | printAttributeSummary( |
---|
| 837 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 838 | print("..."); |
---|
| 839 | FastVector accepts = new FastVector(); |
---|
| 840 | int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0; |
---|
| 841 | boolean predictorMissing = false, classMissing = false; |
---|
| 842 | |
---|
| 843 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 844 | datePredictor, relationalPredictor, |
---|
| 845 | multiInstance, |
---|
| 846 | classType, |
---|
| 847 | classIndex, |
---|
| 848 | missingLevel, predictorMissing, classMissing, |
---|
| 849 | numTrain, numClasses, |
---|
| 850 | accepts); |
---|
| 851 | } |
---|
| 852 | |
---|
| 853 | /** |
---|
| 854 | * Checks whether the scheme can handle zero training instances. |
---|
| 855 | * |
---|
| 856 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 857 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 858 | * @param stringPredictor if true use string predictor attributes |
---|
| 859 | * @param datePredictor if true use date predictor attributes |
---|
| 860 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 861 | * @param multiInstance whether multi-instance is needed |
---|
| 862 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 863 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 864 | * was acceptable |
---|
| 865 | */ |
---|
| 866 | protected boolean[] canHandleZeroTraining( |
---|
| 867 | boolean nominalPredictor, |
---|
| 868 | boolean numericPredictor, |
---|
| 869 | boolean stringPredictor, |
---|
| 870 | boolean datePredictor, |
---|
| 871 | boolean relationalPredictor, |
---|
| 872 | boolean multiInstance, |
---|
| 873 | int classType) { |
---|
| 874 | |
---|
| 875 | print("handle zero training instances"); |
---|
| 876 | printAttributeSummary( |
---|
| 877 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 878 | print("..."); |
---|
| 879 | FastVector accepts = new FastVector(); |
---|
| 880 | accepts.addElement("train"); |
---|
| 881 | accepts.addElement("value"); |
---|
| 882 | int numTrain = 0, numClasses = 2, missingLevel = 0; |
---|
| 883 | boolean predictorMissing = false, classMissing = false; |
---|
| 884 | |
---|
| 885 | return runBasicTest( |
---|
| 886 | nominalPredictor, numericPredictor, stringPredictor, |
---|
| 887 | datePredictor, relationalPredictor, |
---|
| 888 | multiInstance, |
---|
| 889 | classType, |
---|
| 890 | missingLevel, predictorMissing, classMissing, |
---|
| 891 | numTrain, numClasses, |
---|
| 892 | accepts); |
---|
| 893 | } |
---|
| 894 | |
---|
| 895 | /** |
---|
| 896 | * Checks whether the scheme correctly initialises models when |
---|
| 897 | * ASSearch.search is called. This test calls search with |
---|
| 898 | * one training dataset. ASSearch is then called on a training set with |
---|
| 899 | * different structure, and then again with the original training set. |
---|
| 900 | * If the equals method of the ASEvaluation class returns false, this is |
---|
| 901 | * noted as incorrect search initialisation. |
---|
| 902 | * |
---|
| 903 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 904 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 905 | * @param stringPredictor if true use string predictor attributes |
---|
| 906 | * @param datePredictor if true use date predictor attributes |
---|
| 907 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 908 | * @param multiInstance whether multi-instance is needed |
---|
| 909 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 910 | * @return index 0 is true if the test was passed, index 1 is always false |
---|
| 911 | */ |
---|
| 912 | protected boolean[] correctSearchInitialisation( |
---|
| 913 | boolean nominalPredictor, |
---|
| 914 | boolean numericPredictor, |
---|
| 915 | boolean stringPredictor, |
---|
| 916 | boolean datePredictor, |
---|
| 917 | boolean relationalPredictor, |
---|
| 918 | boolean multiInstance, |
---|
| 919 | int classType) { |
---|
| 920 | |
---|
| 921 | boolean[] result = new boolean[2]; |
---|
| 922 | print("correct initialisation during search"); |
---|
| 923 | printAttributeSummary( |
---|
| 924 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 925 | print("..."); |
---|
| 926 | int numTrain = getNumInstances(), |
---|
| 927 | numClasses = 2, missingLevel = 0; |
---|
| 928 | boolean predictorMissing = false, classMissing = false; |
---|
| 929 | |
---|
| 930 | Instances train1 = null; |
---|
| 931 | Instances train2 = null; |
---|
| 932 | ASSearch search = null; |
---|
| 933 | ASEvaluation evaluation1A = null; |
---|
| 934 | ASEvaluation evaluation1B = null; |
---|
| 935 | ASEvaluation evaluation2 = null; |
---|
| 936 | AttributeSelection attsel1A = null; |
---|
| 937 | AttributeSelection attsel1B = null; |
---|
| 938 | int stage = 0; |
---|
| 939 | try { |
---|
| 940 | |
---|
| 941 | // Make two train sets with different numbers of attributes |
---|
| 942 | train1 = makeTestDataset(42, numTrain, |
---|
| 943 | nominalPredictor ? getNumNominal() : 0, |
---|
| 944 | numericPredictor ? getNumNumeric() : 0, |
---|
| 945 | stringPredictor ? getNumString() : 0, |
---|
| 946 | datePredictor ? getNumDate() : 0, |
---|
| 947 | relationalPredictor ? getNumRelational() : 0, |
---|
| 948 | numClasses, |
---|
| 949 | classType, |
---|
| 950 | multiInstance); |
---|
| 951 | train2 = makeTestDataset(84, numTrain, |
---|
| 952 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 953 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 954 | stringPredictor ? getNumString() : 0, |
---|
| 955 | datePredictor ? getNumDate() : 0, |
---|
| 956 | relationalPredictor ? getNumRelational() : 0, |
---|
| 957 | numClasses, |
---|
| 958 | classType, |
---|
| 959 | multiInstance); |
---|
| 960 | if (missingLevel > 0) { |
---|
| 961 | addMissing(train1, missingLevel, predictorMissing, classMissing); |
---|
| 962 | addMissing(train2, missingLevel, predictorMissing, classMissing); |
---|
| 963 | } |
---|
| 964 | |
---|
| 965 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
| 966 | evaluation1A = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 967 | evaluation1B = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 968 | evaluation2 = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 969 | } catch (Exception ex) { |
---|
| 970 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 971 | } |
---|
| 972 | try { |
---|
| 973 | stage = 0; |
---|
| 974 | attsel1A = search(search, evaluation1A, train1); |
---|
| 975 | |
---|
| 976 | stage = 1; |
---|
| 977 | search(search, evaluation2, train2); |
---|
| 978 | |
---|
| 979 | stage = 2; |
---|
| 980 | attsel1B = search(search, evaluation1B, train1); |
---|
| 981 | |
---|
| 982 | stage = 3; |
---|
| 983 | if (!attsel1A.toResultsString().equals(attsel1B.toResultsString())) { |
---|
| 984 | if (m_Debug) { |
---|
| 985 | println( |
---|
| 986 | "\n=== Full report ===\n" |
---|
| 987 | + "\nFirst search\n" |
---|
| 988 | + attsel1A.toResultsString() |
---|
| 989 | + "\n\n"); |
---|
| 990 | println( |
---|
| 991 | "\nSecond search\n" |
---|
| 992 | + attsel1B.toResultsString() |
---|
| 993 | + "\n\n"); |
---|
| 994 | } |
---|
| 995 | throw new Exception("Results differ between search calls"); |
---|
| 996 | } |
---|
| 997 | println("yes"); |
---|
| 998 | result[0] = true; |
---|
| 999 | |
---|
| 1000 | if (false && m_Debug) { |
---|
| 1001 | println( |
---|
| 1002 | "\n=== Full report ===\n" |
---|
| 1003 | + "\nFirst search\n" |
---|
| 1004 | + evaluation1A.toString() |
---|
| 1005 | + "\n\n"); |
---|
| 1006 | println( |
---|
| 1007 | "\nSecond search\n" |
---|
| 1008 | + evaluation1B.toString() |
---|
| 1009 | + "\n\n"); |
---|
| 1010 | } |
---|
| 1011 | } |
---|
| 1012 | catch (Exception ex) { |
---|
| 1013 | println("no"); |
---|
| 1014 | result[0] = false; |
---|
| 1015 | if (m_Debug) { |
---|
| 1016 | println("\n=== Full Report ==="); |
---|
| 1017 | print("Problem during training"); |
---|
| 1018 | switch (stage) { |
---|
| 1019 | case 0: |
---|
| 1020 | print(" of dataset 1"); |
---|
| 1021 | break; |
---|
| 1022 | case 1: |
---|
| 1023 | print(" of dataset 2"); |
---|
| 1024 | break; |
---|
| 1025 | case 2: |
---|
| 1026 | print(" of dataset 1 (2nd build)"); |
---|
| 1027 | break; |
---|
| 1028 | case 3: |
---|
| 1029 | print(", comparing results from builds of dataset 1"); |
---|
| 1030 | break; |
---|
| 1031 | } |
---|
| 1032 | println(": " + ex.getMessage() + "\n"); |
---|
| 1033 | println("here are the datasets:\n"); |
---|
| 1034 | println("=== Train1 Dataset ===\n" |
---|
| 1035 | + train1.toString() + "\n"); |
---|
| 1036 | println("=== Train2 Dataset ===\n" |
---|
| 1037 | + train2.toString() + "\n"); |
---|
| 1038 | } |
---|
| 1039 | } |
---|
| 1040 | |
---|
| 1041 | return result; |
---|
| 1042 | } |
---|
| 1043 | |
---|
| 1044 | /** |
---|
| 1045 | * Checks basic missing value handling of the scheme. If the missing |
---|
| 1046 | * values cause an exception to be thrown by the scheme, this will be |
---|
| 1047 | * recorded. |
---|
| 1048 | * |
---|
| 1049 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1050 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1051 | * @param stringPredictor if true use string predictor attributes |
---|
| 1052 | * @param datePredictor if true use date predictor attributes |
---|
| 1053 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1054 | * @param multiInstance whether multi-instance is needed |
---|
| 1055 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1056 | * @param predictorMissing true if the missing values may be in |
---|
| 1057 | * the predictors |
---|
| 1058 | * @param classMissing true if the missing values may be in the class |
---|
| 1059 | * @param missingLevel the percentage of missing values |
---|
| 1060 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1061 | * was acceptable |
---|
| 1062 | */ |
---|
| 1063 | protected boolean[] canHandleMissing( |
---|
| 1064 | boolean nominalPredictor, |
---|
| 1065 | boolean numericPredictor, |
---|
| 1066 | boolean stringPredictor, |
---|
| 1067 | boolean datePredictor, |
---|
| 1068 | boolean relationalPredictor, |
---|
| 1069 | boolean multiInstance, |
---|
| 1070 | int classType, |
---|
| 1071 | boolean predictorMissing, |
---|
| 1072 | boolean classMissing, |
---|
| 1073 | int missingLevel) { |
---|
| 1074 | |
---|
| 1075 | if (missingLevel == 100) |
---|
| 1076 | print("100% "); |
---|
| 1077 | print("missing"); |
---|
| 1078 | if (predictorMissing) { |
---|
| 1079 | print(" predictor"); |
---|
| 1080 | if (classMissing) |
---|
| 1081 | print(" and"); |
---|
| 1082 | } |
---|
| 1083 | if (classMissing) |
---|
| 1084 | print(" class"); |
---|
| 1085 | print(" values"); |
---|
| 1086 | printAttributeSummary( |
---|
| 1087 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1088 | print("..."); |
---|
| 1089 | FastVector accepts = new FastVector(); |
---|
| 1090 | accepts.addElement("missing"); |
---|
| 1091 | accepts.addElement("value"); |
---|
| 1092 | accepts.addElement("train"); |
---|
| 1093 | accepts.addElement("no attributes"); |
---|
| 1094 | int numTrain = getNumInstances(), numClasses = 2; |
---|
| 1095 | |
---|
| 1096 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
| 1097 | datePredictor, relationalPredictor, |
---|
| 1098 | multiInstance, |
---|
| 1099 | classType, |
---|
| 1100 | missingLevel, predictorMissing, classMissing, |
---|
| 1101 | numTrain, numClasses, |
---|
| 1102 | accepts); |
---|
| 1103 | } |
---|
| 1104 | |
---|
| 1105 | /** |
---|
| 1106 | * Checks whether the scheme can handle instance weights. |
---|
| 1107 | * This test compares the scheme performance on two datasets |
---|
| 1108 | * that are identical except for the training weights. If the |
---|
| 1109 | * results change, then the scheme must be using the weights. It |
---|
| 1110 | * may be possible to get a false positive from this test if the |
---|
| 1111 | * weight changes aren't significant enough to induce a change |
---|
| 1112 | * in scheme performance (but the weights are chosen to minimize |
---|
| 1113 | * the likelihood of this). |
---|
| 1114 | * |
---|
| 1115 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1116 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1117 | * @param stringPredictor if true use string predictor attributes |
---|
| 1118 | * @param datePredictor if true use date predictor attributes |
---|
| 1119 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1120 | * @param multiInstance whether multi-instance is needed |
---|
| 1121 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1122 | * @return index 0 true if the test was passed |
---|
| 1123 | */ |
---|
| 1124 | protected boolean[] instanceWeights( |
---|
| 1125 | boolean nominalPredictor, |
---|
| 1126 | boolean numericPredictor, |
---|
| 1127 | boolean stringPredictor, |
---|
| 1128 | boolean datePredictor, |
---|
| 1129 | boolean relationalPredictor, |
---|
| 1130 | boolean multiInstance, |
---|
| 1131 | int classType) { |
---|
| 1132 | |
---|
| 1133 | print("scheme uses instance weights"); |
---|
| 1134 | printAttributeSummary( |
---|
| 1135 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1136 | print("..."); |
---|
| 1137 | int numTrain = 2*getNumInstances(), |
---|
| 1138 | numClasses = 2, missingLevel = 0; |
---|
| 1139 | boolean predictorMissing = false, classMissing = false; |
---|
| 1140 | |
---|
| 1141 | boolean[] result = new boolean[2]; |
---|
| 1142 | Instances train = null; |
---|
| 1143 | ASSearch[] search = null; |
---|
| 1144 | ASEvaluation evaluationB = null; |
---|
| 1145 | ASEvaluation evaluationI = null; |
---|
| 1146 | AttributeSelection attselB = null; |
---|
| 1147 | AttributeSelection attselI = null; |
---|
| 1148 | boolean evalFail = false; |
---|
| 1149 | try { |
---|
| 1150 | train = makeTestDataset(42, numTrain, |
---|
| 1151 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
| 1152 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
| 1153 | stringPredictor ? getNumString() : 0, |
---|
| 1154 | datePredictor ? getNumDate() : 0, |
---|
| 1155 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1156 | numClasses, |
---|
| 1157 | classType, |
---|
| 1158 | multiInstance); |
---|
| 1159 | if (missingLevel > 0) |
---|
| 1160 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1161 | search = ASSearch.makeCopies(getSearch(), 2); |
---|
| 1162 | evaluationB = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 1163 | evaluationI = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 1164 | attselB = search(search[0], evaluationB, train); |
---|
| 1165 | } catch (Exception ex) { |
---|
| 1166 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1167 | } |
---|
| 1168 | try { |
---|
| 1169 | |
---|
| 1170 | // Now modify instance weights and re-built/test |
---|
| 1171 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1172 | train.instance(i).setWeight(0); |
---|
| 1173 | } |
---|
| 1174 | Random random = new Random(1); |
---|
| 1175 | for (int i = 0; i < train.numInstances() / 2; i++) { |
---|
| 1176 | int inst = Math.abs(random.nextInt()) % train.numInstances(); |
---|
| 1177 | int weight = Math.abs(random.nextInt()) % 10 + 1; |
---|
| 1178 | train.instance(inst).setWeight(weight); |
---|
| 1179 | } |
---|
| 1180 | attselI = search(search[1], evaluationI, train); |
---|
| 1181 | if (attselB.toResultsString().equals(attselI.toResultsString())) { |
---|
| 1182 | // println("no"); |
---|
| 1183 | evalFail = true; |
---|
| 1184 | throw new Exception("evalFail"); |
---|
| 1185 | } |
---|
| 1186 | |
---|
| 1187 | println("yes"); |
---|
| 1188 | result[0] = true; |
---|
| 1189 | } catch (Exception ex) { |
---|
| 1190 | println("no"); |
---|
| 1191 | result[0] = false; |
---|
| 1192 | |
---|
| 1193 | if (m_Debug) { |
---|
| 1194 | println("\n=== Full Report ==="); |
---|
| 1195 | |
---|
| 1196 | if (evalFail) { |
---|
| 1197 | println("Results don't differ between non-weighted and " |
---|
| 1198 | + "weighted instance models."); |
---|
| 1199 | println("Here are the results:\n"); |
---|
| 1200 | println("\nboth methods\n"); |
---|
| 1201 | println(evaluationB.toString()); |
---|
| 1202 | } else { |
---|
| 1203 | print("Problem during training"); |
---|
| 1204 | println(": " + ex.getMessage() + "\n"); |
---|
| 1205 | } |
---|
| 1206 | println("Here is the dataset:\n"); |
---|
| 1207 | println("=== Train Dataset ===\n" |
---|
| 1208 | + train.toString() + "\n"); |
---|
| 1209 | println("=== Train Weights ===\n"); |
---|
| 1210 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1211 | println(" " + (i + 1) |
---|
| 1212 | + " " + train.instance(i).weight()); |
---|
| 1213 | } |
---|
| 1214 | } |
---|
| 1215 | } |
---|
| 1216 | |
---|
| 1217 | return result; |
---|
| 1218 | } |
---|
| 1219 | |
---|
| 1220 | /** |
---|
| 1221 | * Checks whether the scheme alters the training dataset during |
---|
| 1222 | * training. If the scheme needs to modify the training |
---|
| 1223 | * data it should take a copy of the training data. Currently checks |
---|
| 1224 | * for changes to header structure, number of instances, order of |
---|
| 1225 | * instances, instance weights. |
---|
| 1226 | * |
---|
| 1227 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1228 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1229 | * @param stringPredictor if true use string predictor attributes |
---|
| 1230 | * @param datePredictor if true use date predictor attributes |
---|
| 1231 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1232 | * @param multiInstance whether multi-instance is needed |
---|
| 1233 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1234 | * @param predictorMissing true if we know the scheme can handle |
---|
| 1235 | * (at least) moderate missing predictor values |
---|
| 1236 | * @param classMissing true if we know the scheme can handle |
---|
| 1237 | * (at least) moderate missing class values |
---|
| 1238 | * @return index 0 is true if the test was passed |
---|
| 1239 | */ |
---|
| 1240 | protected boolean[] datasetIntegrity( |
---|
| 1241 | boolean nominalPredictor, |
---|
| 1242 | boolean numericPredictor, |
---|
| 1243 | boolean stringPredictor, |
---|
| 1244 | boolean datePredictor, |
---|
| 1245 | boolean relationalPredictor, |
---|
| 1246 | boolean multiInstance, |
---|
| 1247 | int classType, |
---|
| 1248 | boolean predictorMissing, |
---|
| 1249 | boolean classMissing) { |
---|
| 1250 | |
---|
| 1251 | print("scheme doesn't alter original datasets"); |
---|
| 1252 | printAttributeSummary( |
---|
| 1253 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
| 1254 | print("..."); |
---|
| 1255 | int numTrain = getNumInstances(), |
---|
| 1256 | numClasses = 2, missingLevel = 20; |
---|
| 1257 | |
---|
| 1258 | boolean[] result = new boolean[2]; |
---|
| 1259 | Instances train = null; |
---|
| 1260 | Instances trainCopy = null; |
---|
| 1261 | ASSearch search = null; |
---|
| 1262 | ASEvaluation evaluation = null; |
---|
| 1263 | try { |
---|
| 1264 | train = makeTestDataset(42, numTrain, |
---|
| 1265 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1266 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1267 | stringPredictor ? getNumString() : 0, |
---|
| 1268 | datePredictor ? getNumDate() : 0, |
---|
| 1269 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1270 | numClasses, |
---|
| 1271 | classType, |
---|
| 1272 | multiInstance); |
---|
| 1273 | if (missingLevel > 0) |
---|
| 1274 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1275 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
| 1276 | evaluation = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 1277 | trainCopy = new Instances(train); |
---|
| 1278 | } catch (Exception ex) { |
---|
| 1279 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1280 | } |
---|
| 1281 | try { |
---|
| 1282 | search(search, evaluation, trainCopy); |
---|
| 1283 | compareDatasets(train, trainCopy); |
---|
| 1284 | |
---|
| 1285 | println("yes"); |
---|
| 1286 | result[0] = true; |
---|
| 1287 | } catch (Exception ex) { |
---|
| 1288 | println("no"); |
---|
| 1289 | result[0] = false; |
---|
| 1290 | |
---|
| 1291 | if (m_Debug) { |
---|
| 1292 | println("\n=== Full Report ==="); |
---|
| 1293 | print("Problem during training"); |
---|
| 1294 | println(": " + ex.getMessage() + "\n"); |
---|
| 1295 | println("Here are the datasets:\n"); |
---|
| 1296 | println("=== Train Dataset (original) ===\n" |
---|
| 1297 | + trainCopy.toString() + "\n"); |
---|
| 1298 | println("=== Train Dataset ===\n" |
---|
| 1299 | + train.toString() + "\n"); |
---|
| 1300 | } |
---|
| 1301 | } |
---|
| 1302 | |
---|
| 1303 | return result; |
---|
| 1304 | } |
---|
| 1305 | |
---|
| 1306 | /** |
---|
| 1307 | * Runs a text on the datasets with the given characteristics. |
---|
| 1308 | * |
---|
| 1309 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1310 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1311 | * @param stringPredictor if true use string predictor attributes |
---|
| 1312 | * @param datePredictor if true use date predictor attributes |
---|
| 1313 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1314 | * @param multiInstance whether multi-instance is needed |
---|
| 1315 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1316 | * @param missingLevel the percentage of missing values |
---|
| 1317 | * @param predictorMissing true if the missing values may be in |
---|
| 1318 | * the predictors |
---|
| 1319 | * @param classMissing true if the missing values may be in the class |
---|
| 1320 | * @param numTrain the number of instances in the training set |
---|
| 1321 | * @param numClasses the number of classes |
---|
| 1322 | * @param accepts the acceptable string in an exception |
---|
| 1323 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1324 | * was acceptable |
---|
| 1325 | */ |
---|
| 1326 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
| 1327 | boolean numericPredictor, |
---|
| 1328 | boolean stringPredictor, |
---|
| 1329 | boolean datePredictor, |
---|
| 1330 | boolean relationalPredictor, |
---|
| 1331 | boolean multiInstance, |
---|
| 1332 | int classType, |
---|
| 1333 | int missingLevel, |
---|
| 1334 | boolean predictorMissing, |
---|
| 1335 | boolean classMissing, |
---|
| 1336 | int numTrain, |
---|
| 1337 | int numClasses, |
---|
| 1338 | FastVector accepts) { |
---|
| 1339 | |
---|
| 1340 | return runBasicTest( |
---|
| 1341 | nominalPredictor, |
---|
| 1342 | numericPredictor, |
---|
| 1343 | stringPredictor, |
---|
| 1344 | datePredictor, |
---|
| 1345 | relationalPredictor, |
---|
| 1346 | multiInstance, |
---|
| 1347 | classType, |
---|
| 1348 | TestInstances.CLASS_IS_LAST, |
---|
| 1349 | missingLevel, |
---|
| 1350 | predictorMissing, |
---|
| 1351 | classMissing, |
---|
| 1352 | numTrain, |
---|
| 1353 | numClasses, |
---|
| 1354 | accepts); |
---|
| 1355 | } |
---|
| 1356 | |
---|
| 1357 | /** |
---|
| 1358 | * Runs a text on the datasets with the given characteristics. |
---|
| 1359 | * |
---|
| 1360 | * @param nominalPredictor if true use nominal predictor attributes |
---|
| 1361 | * @param numericPredictor if true use numeric predictor attributes |
---|
| 1362 | * @param stringPredictor if true use string predictor attributes |
---|
| 1363 | * @param datePredictor if true use date predictor attributes |
---|
| 1364 | * @param relationalPredictor if true use relational predictor attributes |
---|
| 1365 | * @param multiInstance whether multi-instance is needed |
---|
| 1366 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1367 | * @param classIndex the attribute index of the class |
---|
| 1368 | * @param missingLevel the percentage of missing values |
---|
| 1369 | * @param predictorMissing true if the missing values may be in |
---|
| 1370 | * the predictors |
---|
| 1371 | * @param classMissing true if the missing values may be in the class |
---|
| 1372 | * @param numTrain the number of instances in the training set |
---|
| 1373 | * @param numClasses the number of classes |
---|
| 1374 | * @param accepts the acceptable string in an exception |
---|
| 1375 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
| 1376 | * was acceptable |
---|
| 1377 | */ |
---|
| 1378 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
| 1379 | boolean numericPredictor, |
---|
| 1380 | boolean stringPredictor, |
---|
| 1381 | boolean datePredictor, |
---|
| 1382 | boolean relationalPredictor, |
---|
| 1383 | boolean multiInstance, |
---|
| 1384 | int classType, |
---|
| 1385 | int classIndex, |
---|
| 1386 | int missingLevel, |
---|
| 1387 | boolean predictorMissing, |
---|
| 1388 | boolean classMissing, |
---|
| 1389 | int numTrain, |
---|
| 1390 | int numClasses, |
---|
| 1391 | FastVector accepts) { |
---|
| 1392 | |
---|
| 1393 | boolean[] result = new boolean[2]; |
---|
| 1394 | Instances train = null; |
---|
| 1395 | ASSearch search = null; |
---|
| 1396 | ASEvaluation evaluation = null; |
---|
| 1397 | try { |
---|
| 1398 | train = makeTestDataset(42, numTrain, |
---|
| 1399 | nominalPredictor ? getNumNominal() : 0, |
---|
| 1400 | numericPredictor ? getNumNumeric() : 0, |
---|
| 1401 | stringPredictor ? getNumString() : 0, |
---|
| 1402 | datePredictor ? getNumDate() : 0, |
---|
| 1403 | relationalPredictor ? getNumRelational() : 0, |
---|
| 1404 | numClasses, |
---|
| 1405 | classType, |
---|
| 1406 | classIndex, |
---|
| 1407 | multiInstance); |
---|
| 1408 | if (missingLevel > 0) |
---|
| 1409 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
| 1410 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
| 1411 | evaluation = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
| 1412 | } catch (Exception ex) { |
---|
| 1413 | ex.printStackTrace(); |
---|
| 1414 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
| 1415 | } |
---|
| 1416 | try { |
---|
| 1417 | search(search, evaluation, train); |
---|
| 1418 | println("yes"); |
---|
| 1419 | result[0] = true; |
---|
| 1420 | } |
---|
| 1421 | catch (Exception ex) { |
---|
| 1422 | boolean acceptable = false; |
---|
| 1423 | String msg; |
---|
| 1424 | if (ex.getMessage() == null) |
---|
| 1425 | msg = ""; |
---|
| 1426 | else |
---|
| 1427 | msg = ex.getMessage().toLowerCase(); |
---|
| 1428 | if (msg.indexOf("not in classpath") > -1) |
---|
| 1429 | m_ClasspathProblems = true; |
---|
| 1430 | for (int i = 0; i < accepts.size(); i++) { |
---|
| 1431 | if (msg.indexOf((String)accepts.elementAt(i)) >= 0) { |
---|
| 1432 | acceptable = true; |
---|
| 1433 | } |
---|
| 1434 | } |
---|
| 1435 | |
---|
| 1436 | println("no" + (acceptable ? " (OK error message)" : "")); |
---|
| 1437 | result[1] = acceptable; |
---|
| 1438 | |
---|
| 1439 | if (m_Debug) { |
---|
| 1440 | println("\n=== Full Report ==="); |
---|
| 1441 | print("Problem during training"); |
---|
| 1442 | println(": " + ex.getMessage() + "\n"); |
---|
| 1443 | if (!acceptable) { |
---|
| 1444 | if (accepts.size() > 0) { |
---|
| 1445 | print("Error message doesn't mention "); |
---|
| 1446 | for (int i = 0; i < accepts.size(); i++) { |
---|
| 1447 | if (i != 0) { |
---|
| 1448 | print(" or "); |
---|
| 1449 | } |
---|
| 1450 | print('"' + (String)accepts.elementAt(i) + '"'); |
---|
| 1451 | } |
---|
| 1452 | } |
---|
| 1453 | println("here is the dataset:\n"); |
---|
| 1454 | println("=== Train Dataset ===\n" |
---|
| 1455 | + train.toString() + "\n"); |
---|
| 1456 | } |
---|
| 1457 | } |
---|
| 1458 | } |
---|
| 1459 | |
---|
| 1460 | return result; |
---|
| 1461 | } |
---|
| 1462 | |
---|
| 1463 | /** |
---|
| 1464 | * Make a simple set of instances, which can later be modified |
---|
| 1465 | * for use in specific tests. |
---|
| 1466 | * |
---|
| 1467 | * @param seed the random number seed |
---|
| 1468 | * @param numInstances the number of instances to generate |
---|
| 1469 | * @param numNominal the number of nominal attributes |
---|
| 1470 | * @param numNumeric the number of numeric attributes |
---|
| 1471 | * @param numString the number of string attributes |
---|
| 1472 | * @param numDate the number of date attributes |
---|
| 1473 | * @param numRelational the number of relational attributes |
---|
| 1474 | * @param numClasses the number of classes (if nominal class) |
---|
| 1475 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1476 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
| 1477 | * @return the test dataset |
---|
| 1478 | * @throws Exception if the dataset couldn't be generated |
---|
| 1479 | * @see #process(Instances) |
---|
| 1480 | */ |
---|
| 1481 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
| 1482 | int numNominal, int numNumeric, |
---|
| 1483 | int numString, int numDate, |
---|
| 1484 | int numRelational, |
---|
| 1485 | int numClasses, int classType, |
---|
| 1486 | boolean multiInstance) |
---|
| 1487 | throws Exception { |
---|
| 1488 | |
---|
| 1489 | return makeTestDataset( |
---|
| 1490 | seed, |
---|
| 1491 | numInstances, |
---|
| 1492 | numNominal, |
---|
| 1493 | numNumeric, |
---|
| 1494 | numString, |
---|
| 1495 | numDate, |
---|
| 1496 | numRelational, |
---|
| 1497 | numClasses, |
---|
| 1498 | classType, |
---|
| 1499 | TestInstances.CLASS_IS_LAST, |
---|
| 1500 | multiInstance); |
---|
| 1501 | } |
---|
| 1502 | |
---|
| 1503 | /** |
---|
| 1504 | * Make a simple set of instances with variable position of the class |
---|
| 1505 | * attribute, which can later be modified for use in specific tests. |
---|
| 1506 | * |
---|
| 1507 | * @param seed the random number seed |
---|
| 1508 | * @param numInstances the number of instances to generate |
---|
| 1509 | * @param numNominal the number of nominal attributes |
---|
| 1510 | * @param numNumeric the number of numeric attributes |
---|
| 1511 | * @param numString the number of string attributes |
---|
| 1512 | * @param numDate the number of date attributes |
---|
| 1513 | * @param numRelational the number of relational attributes |
---|
| 1514 | * @param numClasses the number of classes (if nominal class) |
---|
| 1515 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1516 | * @param classIndex the index of the class (0-based, -1 as last) |
---|
| 1517 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
| 1518 | * @return the test dataset |
---|
| 1519 | * @throws Exception if the dataset couldn't be generated |
---|
| 1520 | * @see TestInstances#CLASS_IS_LAST |
---|
| 1521 | * @see #process(Instances) |
---|
| 1522 | */ |
---|
| 1523 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
| 1524 | int numNominal, int numNumeric, |
---|
| 1525 | int numString, int numDate, |
---|
| 1526 | int numRelational, |
---|
| 1527 | int numClasses, int classType, |
---|
| 1528 | int classIndex, |
---|
| 1529 | boolean multiInstance) |
---|
| 1530 | throws Exception { |
---|
| 1531 | |
---|
| 1532 | TestInstances dataset = new TestInstances(); |
---|
| 1533 | |
---|
| 1534 | dataset.setSeed(seed); |
---|
| 1535 | dataset.setNumInstances(numInstances); |
---|
| 1536 | dataset.setNumNominal(numNominal); |
---|
| 1537 | dataset.setNumNumeric(numNumeric); |
---|
| 1538 | dataset.setNumString(numString); |
---|
| 1539 | dataset.setNumDate(numDate); |
---|
| 1540 | dataset.setNumRelational(numRelational); |
---|
| 1541 | dataset.setNumClasses(numClasses); |
---|
| 1542 | dataset.setClassType(classType); |
---|
| 1543 | dataset.setClassIndex(classIndex); |
---|
| 1544 | dataset.setNumClasses(numClasses); |
---|
| 1545 | dataset.setMultiInstance(multiInstance); |
---|
| 1546 | dataset.setWords(getWords()); |
---|
| 1547 | dataset.setWordSeparators(getWordSeparators()); |
---|
| 1548 | |
---|
| 1549 | return process(dataset.generate()); |
---|
| 1550 | } |
---|
| 1551 | |
---|
| 1552 | /** |
---|
| 1553 | * Print out a short summary string for the dataset characteristics |
---|
| 1554 | * |
---|
| 1555 | * @param nominalPredictor true if nominal predictor attributes are present |
---|
| 1556 | * @param numericPredictor true if numeric predictor attributes are present |
---|
| 1557 | * @param stringPredictor true if string predictor attributes are present |
---|
| 1558 | * @param datePredictor true if date predictor attributes are present |
---|
| 1559 | * @param relationalPredictor true if relational predictor attributes are present |
---|
| 1560 | * @param multiInstance whether multi-instance is needed |
---|
| 1561 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
| 1562 | */ |
---|
| 1563 | protected void printAttributeSummary(boolean nominalPredictor, |
---|
| 1564 | boolean numericPredictor, |
---|
| 1565 | boolean stringPredictor, |
---|
| 1566 | boolean datePredictor, |
---|
| 1567 | boolean relationalPredictor, |
---|
| 1568 | boolean multiInstance, |
---|
| 1569 | int classType) { |
---|
| 1570 | |
---|
| 1571 | String str = ""; |
---|
| 1572 | |
---|
| 1573 | if (numericPredictor) |
---|
| 1574 | str += " numeric"; |
---|
| 1575 | |
---|
| 1576 | if (nominalPredictor) { |
---|
| 1577 | if (str.length() > 0) |
---|
| 1578 | str += " &"; |
---|
| 1579 | str += " nominal"; |
---|
| 1580 | } |
---|
| 1581 | |
---|
| 1582 | if (stringPredictor) { |
---|
| 1583 | if (str.length() > 0) |
---|
| 1584 | str += " &"; |
---|
| 1585 | str += " string"; |
---|
| 1586 | } |
---|
| 1587 | |
---|
| 1588 | if (datePredictor) { |
---|
| 1589 | if (str.length() > 0) |
---|
| 1590 | str += " &"; |
---|
| 1591 | str += " date"; |
---|
| 1592 | } |
---|
| 1593 | |
---|
| 1594 | if (relationalPredictor) { |
---|
| 1595 | if (str.length() > 0) |
---|
| 1596 | str += " &"; |
---|
| 1597 | str += " relational"; |
---|
| 1598 | } |
---|
| 1599 | |
---|
| 1600 | str += " predictors)"; |
---|
| 1601 | |
---|
| 1602 | switch (classType) { |
---|
| 1603 | case Attribute.NUMERIC: |
---|
| 1604 | str = " (numeric class," + str; |
---|
| 1605 | break; |
---|
| 1606 | case Attribute.NOMINAL: |
---|
| 1607 | str = " (nominal class," + str; |
---|
| 1608 | break; |
---|
| 1609 | case Attribute.STRING: |
---|
| 1610 | str = " (string class," + str; |
---|
| 1611 | break; |
---|
| 1612 | case Attribute.DATE: |
---|
| 1613 | str = " (date class," + str; |
---|
| 1614 | break; |
---|
| 1615 | case Attribute.RELATIONAL: |
---|
| 1616 | str = " (relational class," + str; |
---|
| 1617 | break; |
---|
| 1618 | } |
---|
| 1619 | |
---|
| 1620 | print(str); |
---|
| 1621 | } |
---|
| 1622 | |
---|
| 1623 | /** |
---|
| 1624 | * Returns the revision string. |
---|
| 1625 | * |
---|
| 1626 | * @return the revision |
---|
| 1627 | */ |
---|
| 1628 | public String getRevision() { |
---|
| 1629 | return RevisionUtils.extract("$Revision: 4783 $"); |
---|
| 1630 | } |
---|
| 1631 | |
---|
| 1632 | /** |
---|
| 1633 | * Test method for this class |
---|
| 1634 | * |
---|
| 1635 | * @param args the commandline parameters |
---|
| 1636 | */ |
---|
| 1637 | public static void main(String [] args) { |
---|
| 1638 | runCheck(new CheckAttributeSelection(), args); |
---|
| 1639 | } |
---|
| 1640 | } |
---|
| 1641 | |
---|