[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * PriorEstimation.java |
---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.associations; |
---|
| 24 | |
---|
| 25 | import weka.core.Instances; |
---|
| 26 | import weka.core.RevisionHandler; |
---|
| 27 | import weka.core.RevisionUtils; |
---|
| 28 | import weka.core.SpecialFunctions; |
---|
| 29 | import weka.core.Utils; |
---|
| 30 | |
---|
| 31 | import java.io.Serializable; |
---|
| 32 | import java.util.Hashtable; |
---|
| 33 | import java.util.Random; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | * Class implementing the prior estimattion of the predictive apriori algorithm |
---|
| 37 | * for mining association rules. |
---|
| 38 | * |
---|
| 39 | * Reference: T. Scheffer (2001). <i>Finding Association Rules That Trade Support |
---|
| 40 | * Optimally against Confidence</i>. Proc of the 5th European Conf. |
---|
| 41 | * on Principles and Practice of Knowledge Discovery in Databases (PKDD'01), |
---|
| 42 | * pp. 424-435. Freiburg, Germany: Springer-Verlag. <p> |
---|
| 43 | * |
---|
| 44 | * @author Stefan Mutter (mutter@cs.waikato.ac.nz) |
---|
| 45 | * @version $Revision: 1.7 $ */ |
---|
| 46 | |
---|
| 47 | public class PriorEstimation |
---|
| 48 | implements Serializable, RevisionHandler { |
---|
| 49 | |
---|
| 50 | /** for serialization */ |
---|
| 51 | private static final long serialVersionUID = 5570863216522496271L; |
---|
| 52 | |
---|
| 53 | /** The number of rnadom rules. */ |
---|
| 54 | protected int m_numRandRules; |
---|
| 55 | |
---|
| 56 | /** The number of intervals. */ |
---|
| 57 | protected int m_numIntervals; |
---|
| 58 | |
---|
| 59 | /** The random seed used for the random rule generation step. */ |
---|
| 60 | protected static final int SEED = 0; |
---|
| 61 | |
---|
| 62 | /** The maximum number of attributes for which a prior can be estimated. */ |
---|
| 63 | protected static final int MAX_N = 1024; |
---|
| 64 | |
---|
| 65 | /** The random number generator. */ |
---|
| 66 | protected Random m_randNum; |
---|
| 67 | |
---|
| 68 | /** The instances for which association rules are mined. */ |
---|
| 69 | protected Instances m_instances; |
---|
| 70 | |
---|
| 71 | /** Flag indicating whether standard association rules or class association rules are mined. */ |
---|
| 72 | protected boolean m_CARs; |
---|
| 73 | |
---|
| 74 | /** Hashtable to store the confidence values of randomly generated rules. */ |
---|
| 75 | protected Hashtable m_distribution; |
---|
| 76 | |
---|
| 77 | /** Hashtable containing the estimated prior probabilities. */ |
---|
| 78 | protected Hashtable m_priors; |
---|
| 79 | |
---|
| 80 | /** Sums up the confidences of all rules with a certain length. */ |
---|
| 81 | protected double m_sum; |
---|
| 82 | |
---|
| 83 | /** The mid points of the discrete intervals in which the interval [0,1] is divided. */ |
---|
| 84 | protected double[] m_midPoints; |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | /** |
---|
| 89 | * Constructor |
---|
| 90 | * |
---|
| 91 | * @param instances the instances to be used for generating the associations |
---|
| 92 | * @param numRules the number of random rules used for generating the prior |
---|
| 93 | * @param numIntervals the number of intervals to discretise [0,1] |
---|
| 94 | * @param car flag indicating whether standard or class association rules are mined |
---|
| 95 | */ |
---|
| 96 | public PriorEstimation(Instances instances,int numRules,int numIntervals,boolean car) { |
---|
| 97 | |
---|
| 98 | m_instances = instances; |
---|
| 99 | m_CARs = car; |
---|
| 100 | m_numRandRules = numRules; |
---|
| 101 | m_numIntervals = numIntervals; |
---|
| 102 | m_randNum = m_instances.getRandomNumberGenerator(SEED); |
---|
| 103 | } |
---|
| 104 | /** |
---|
| 105 | * Calculates the prior distribution. |
---|
| 106 | * |
---|
| 107 | * @exception Exception if prior can't be estimated successfully |
---|
| 108 | */ |
---|
| 109 | public final void generateDistribution() throws Exception{ |
---|
| 110 | |
---|
| 111 | boolean jump; |
---|
| 112 | int i,maxLength = m_instances.numAttributes(), count =0,count1=0, ruleCounter; |
---|
| 113 | int [] itemArray; |
---|
| 114 | m_distribution = new Hashtable(maxLength*m_numIntervals); |
---|
| 115 | RuleItem current; |
---|
| 116 | ItemSet generate; |
---|
| 117 | |
---|
| 118 | if(m_instances.numAttributes() == 0) |
---|
| 119 | throw new Exception("Dataset has no attributes!"); |
---|
| 120 | if(m_instances.numAttributes() >= MAX_N) |
---|
| 121 | throw new Exception("Dataset has to many attributes for prior estimation!"); |
---|
| 122 | if(m_instances.numInstances() == 0) |
---|
| 123 | throw new Exception("Dataset has no instances!"); |
---|
| 124 | for (int h = 0; h < maxLength; h++) { |
---|
| 125 | if (m_instances.attribute(h).isNumeric()) |
---|
| 126 | throw new Exception("Can't handle numeric attributes!"); |
---|
| 127 | } |
---|
| 128 | if(m_numIntervals == 0 || m_numRandRules == 0) |
---|
| 129 | throw new Exception("Prior initialisation impossible"); |
---|
| 130 | |
---|
| 131 | //calculate mid points for the intervals |
---|
| 132 | midPoints(); |
---|
| 133 | |
---|
| 134 | //create random rules of length i and measure their support and if support >0 their confidence |
---|
| 135 | for(i = 1;i <= maxLength; i++){ |
---|
| 136 | m_sum = 0; |
---|
| 137 | int j = 0; |
---|
| 138 | count = 0; |
---|
| 139 | count1 = 0; |
---|
| 140 | while(j < m_numRandRules){ |
---|
| 141 | count++; |
---|
| 142 | jump =false; |
---|
| 143 | if(!m_CARs){ |
---|
| 144 | itemArray = randomRule(maxLength,i,m_randNum); |
---|
| 145 | current = splitItemSet(m_randNum.nextInt(i), itemArray); |
---|
| 146 | } |
---|
| 147 | else{ |
---|
| 148 | itemArray = randomCARule(maxLength,i,m_randNum); |
---|
| 149 | current = addCons(itemArray); |
---|
| 150 | } |
---|
| 151 | int [] ruleItem = new int[maxLength]; |
---|
| 152 | for(int k =0; k < itemArray.length;k++){ |
---|
| 153 | if(current.m_premise.m_items[k] != -1) |
---|
| 154 | ruleItem[k] = current.m_premise.m_items[k]; |
---|
| 155 | else |
---|
| 156 | if(current.m_consequence.m_items[k] != -1) |
---|
| 157 | ruleItem[k] = current.m_consequence.m_items[k]; |
---|
| 158 | else |
---|
| 159 | ruleItem[k] = -1; |
---|
| 160 | } |
---|
| 161 | ItemSet rule = new ItemSet(ruleItem); |
---|
| 162 | updateCounters(rule); |
---|
| 163 | ruleCounter = rule.m_counter; |
---|
| 164 | if(ruleCounter > 0) |
---|
| 165 | jump =true; |
---|
| 166 | updateCounters(current.m_premise); |
---|
| 167 | j++; |
---|
| 168 | if(jump){ |
---|
| 169 | buildDistribution((double)ruleCounter/(double)current.m_premise.m_counter, (double)i); |
---|
| 170 | } |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | //normalize |
---|
| 174 | if(m_sum > 0){ |
---|
| 175 | for(int w = 0; w < m_midPoints.length;w++){ |
---|
| 176 | String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); |
---|
| 177 | Double oldValue = (Double)m_distribution.remove(key); |
---|
| 178 | if(oldValue == null){ |
---|
| 179 | m_distribution.put(key,new Double(1.0/m_numIntervals)); |
---|
| 180 | m_sum += 1.0/m_numIntervals; |
---|
| 181 | } |
---|
| 182 | else |
---|
| 183 | m_distribution.put(key,oldValue); |
---|
| 184 | } |
---|
| 185 | for(int w = 0; w < m_midPoints.length;w++){ |
---|
| 186 | double conf =0; |
---|
| 187 | String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); |
---|
| 188 | Double oldValue = (Double)m_distribution.remove(key); |
---|
| 189 | if(oldValue != null){ |
---|
| 190 | conf = oldValue.doubleValue() / m_sum; |
---|
| 191 | m_distribution.put(key,new Double(conf)); |
---|
| 192 | } |
---|
| 193 | } |
---|
| 194 | } |
---|
| 195 | else{ |
---|
| 196 | for(int w = 0; w < m_midPoints.length;w++){ |
---|
| 197 | String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); |
---|
| 198 | m_distribution.put(key,new Double(1.0/m_numIntervals)); |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Constructs an item set of certain length randomly. |
---|
| 207 | * This method is used for standard association rule mining. |
---|
| 208 | * @param maxLength the number of attributes of the instances |
---|
| 209 | * @param actualLength the number of attributes that should be present in the item set |
---|
| 210 | * @param randNum the random number generator |
---|
| 211 | * @return a randomly constructed item set in form of an int array |
---|
| 212 | */ |
---|
| 213 | public final int[] randomRule(int maxLength, int actualLength, Random randNum){ |
---|
| 214 | |
---|
| 215 | int[] itemArray = new int[maxLength]; |
---|
| 216 | for(int k =0;k < itemArray.length;k++) |
---|
| 217 | itemArray[k] = -1; |
---|
| 218 | int help =actualLength; |
---|
| 219 | if(help == maxLength){ |
---|
| 220 | help = 0; |
---|
| 221 | for(int h = 0; h < itemArray.length; h++){ |
---|
| 222 | itemArray[h] = m_randNum.nextInt((m_instances.attribute(h)).numValues()); |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | while(help > 0){ |
---|
| 226 | int mark = randNum.nextInt(maxLength); |
---|
| 227 | if(itemArray[mark] == -1){ |
---|
| 228 | help--; |
---|
| 229 | itemArray[mark] = m_randNum.nextInt((m_instances.attribute(mark)).numValues()); |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | return itemArray; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | /** |
---|
| 237 | * Constructs an item set of certain length randomly. |
---|
| 238 | * This method is used for class association rule mining. |
---|
| 239 | * @param maxLength the number of attributes of the instances |
---|
| 240 | * @param actualLength the number of attributes that should be present in the item set |
---|
| 241 | * @param randNum the random number generator |
---|
| 242 | * @return a randomly constructed item set in form of an int array |
---|
| 243 | */ |
---|
| 244 | public final int[] randomCARule(int maxLength, int actualLength, Random randNum){ |
---|
| 245 | |
---|
| 246 | int[] itemArray = new int[maxLength]; |
---|
| 247 | for(int k =0;k < itemArray.length;k++) |
---|
| 248 | itemArray[k] = -1; |
---|
| 249 | if(actualLength == 1) |
---|
| 250 | return itemArray; |
---|
| 251 | int help =actualLength-1; |
---|
| 252 | if(help == maxLength-1){ |
---|
| 253 | help = 0; |
---|
| 254 | for(int h = 0; h < itemArray.length; h++){ |
---|
| 255 | if(h != m_instances.classIndex()){ |
---|
| 256 | itemArray[h] = m_randNum.nextInt((m_instances.attribute(h)).numValues()); |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | while(help > 0){ |
---|
| 261 | int mark = randNum.nextInt(maxLength); |
---|
| 262 | if(itemArray[mark] == -1 && mark != m_instances.classIndex()){ |
---|
| 263 | help--; |
---|
| 264 | itemArray[mark] = m_randNum.nextInt((m_instances.attribute(mark)).numValues()); |
---|
| 265 | } |
---|
| 266 | } |
---|
| 267 | return itemArray; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * updates the distribution of the confidence values. |
---|
| 272 | * For every confidence value the interval to which it belongs is searched |
---|
| 273 | * and the confidence is added to the confidence already found in this |
---|
| 274 | * interval. |
---|
| 275 | * @param conf the confidence of the randomly created rule |
---|
| 276 | * @param length the legnth of the randomly created rule |
---|
| 277 | */ |
---|
| 278 | public final void buildDistribution(double conf, double length){ |
---|
| 279 | |
---|
| 280 | double mPoint = findIntervall(conf); |
---|
| 281 | String key = (String.valueOf(mPoint)).concat(String.valueOf(length)); |
---|
| 282 | m_sum += conf; |
---|
| 283 | Double oldValue = (Double)m_distribution.remove(key); |
---|
| 284 | if(oldValue != null) |
---|
| 285 | conf = conf + oldValue.doubleValue(); |
---|
| 286 | m_distribution.put(key,new Double(conf)); |
---|
| 287 | |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | /** |
---|
| 291 | * searches the mid point of the interval a given confidence value falls into |
---|
| 292 | * @param conf the confidence of a rule |
---|
| 293 | * @return the mid point of the interval the confidence belongs to |
---|
| 294 | */ |
---|
| 295 | public final double findIntervall(double conf){ |
---|
| 296 | |
---|
| 297 | if(conf == 1.0) |
---|
| 298 | return m_midPoints[m_midPoints.length-1]; |
---|
| 299 | int end = m_midPoints.length-1; |
---|
| 300 | int start = 0; |
---|
| 301 | while (Math.abs(end-start) > 1) { |
---|
| 302 | int mid = (start + end) / 2; |
---|
| 303 | if (conf > m_midPoints[mid]) |
---|
| 304 | start = mid+1; |
---|
| 305 | if (conf < m_midPoints[mid]) |
---|
| 306 | end = mid-1; |
---|
| 307 | if(conf == m_midPoints[mid]) |
---|
| 308 | return m_midPoints[mid]; |
---|
| 309 | } |
---|
| 310 | if(Math.abs(conf-m_midPoints[start]) <= Math.abs(conf-m_midPoints[end])) |
---|
| 311 | return m_midPoints[start]; |
---|
| 312 | else |
---|
| 313 | return m_midPoints[end]; |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * calculates the numerator and the denominator of the prior equation |
---|
| 319 | * @param weighted indicates whether the numerator or the denominator is calculated |
---|
| 320 | * @param mPoint the mid Point of an interval |
---|
| 321 | * @return the numerator or denominator of the prior equation |
---|
| 322 | */ |
---|
| 323 | public final double calculatePriorSum(boolean weighted, double mPoint){ |
---|
| 324 | |
---|
| 325 | double distr, sum =0, max = logbinomialCoefficient(m_instances.numAttributes(),(int)m_instances.numAttributes()/2); |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | for(int i = 1; i <= m_instances.numAttributes(); i++){ |
---|
| 329 | |
---|
| 330 | if(weighted){ |
---|
| 331 | String key = (String.valueOf(mPoint)).concat(String.valueOf((double)i)); |
---|
| 332 | Double hashValue = (Double)m_distribution.get(key); |
---|
| 333 | |
---|
| 334 | if(hashValue !=null) |
---|
| 335 | distr = hashValue.doubleValue(); |
---|
| 336 | else |
---|
| 337 | distr = 0; |
---|
| 338 | //distr = 1.0/m_numIntervals; |
---|
| 339 | if(distr != 0){ |
---|
| 340 | double addend = Utils.log2(distr) - max + Utils.log2((Math.pow(2,i)-1)) + logbinomialCoefficient(m_instances.numAttributes(),i); |
---|
| 341 | sum = sum + Math.pow(2,addend); |
---|
| 342 | } |
---|
| 343 | } |
---|
| 344 | else{ |
---|
| 345 | double addend = Utils.log2((Math.pow(2,i)-1)) - max + logbinomialCoefficient(m_instances.numAttributes(),i); |
---|
| 346 | sum = sum + Math.pow(2,addend); |
---|
| 347 | } |
---|
| 348 | } |
---|
| 349 | return sum; |
---|
| 350 | } |
---|
| 351 | /** |
---|
| 352 | * Method that calculates the base 2 logarithm of a binomial coefficient |
---|
| 353 | * @param upperIndex upper Inedx of the binomial coefficient |
---|
| 354 | * @param lowerIndex lower index of the binomial coefficient |
---|
| 355 | * @return the base 2 logarithm of the binomial coefficient |
---|
| 356 | */ |
---|
| 357 | public static final double logbinomialCoefficient(int upperIndex, int lowerIndex){ |
---|
| 358 | |
---|
| 359 | double result =1.0; |
---|
| 360 | if(upperIndex == lowerIndex || lowerIndex == 0) |
---|
| 361 | return result; |
---|
| 362 | result = SpecialFunctions.log2Binomial((double)upperIndex, (double)lowerIndex); |
---|
| 363 | return result; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | /** |
---|
| 367 | * Method to estimate the prior probabilities |
---|
| 368 | * @throws Exception throws exception if the prior cannot be calculated |
---|
| 369 | * @return a hashtable containing the prior probabilities |
---|
| 370 | */ |
---|
| 371 | public final Hashtable estimatePrior() throws Exception{ |
---|
| 372 | |
---|
| 373 | double distr, prior, denominator, mPoint; |
---|
| 374 | |
---|
| 375 | Hashtable m_priors = new Hashtable(m_numIntervals); |
---|
| 376 | denominator = calculatePriorSum(false,1.0); |
---|
| 377 | generateDistribution(); |
---|
| 378 | for(int i = 0; i < m_numIntervals; i++){ |
---|
| 379 | mPoint = m_midPoints[i]; |
---|
| 380 | prior = calculatePriorSum(true,mPoint) / denominator; |
---|
| 381 | m_priors.put(new Double(mPoint), new Double(prior)); |
---|
| 382 | } |
---|
| 383 | return m_priors; |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | /** |
---|
| 387 | * split the interval [0,1] into a predefined number of intervals and calculates their mid points |
---|
| 388 | */ |
---|
| 389 | public final void midPoints(){ |
---|
| 390 | |
---|
| 391 | m_midPoints = new double[m_numIntervals]; |
---|
| 392 | for(int i = 0; i < m_numIntervals; i++) |
---|
| 393 | m_midPoints[i] = midPoint(1.0/m_numIntervals, i); |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | /** |
---|
| 397 | * calculates the mid point of an interval |
---|
| 398 | * @param size the size of each interval |
---|
| 399 | * @param number the number of the interval. |
---|
| 400 | * The intervals are numbered from 0 to m_numIntervals. |
---|
| 401 | * @return the mid point of the interval |
---|
| 402 | */ |
---|
| 403 | public double midPoint(double size, int number){ |
---|
| 404 | |
---|
| 405 | return (size * (double)number) + (size / 2.0); |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | /** |
---|
| 409 | * returns an ordered array of all mid points |
---|
| 410 | * @return an ordered array of doubles conatining all midpoints |
---|
| 411 | */ |
---|
| 412 | public final double[] getMidPoints(){ |
---|
| 413 | |
---|
| 414 | return m_midPoints; |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | |
---|
| 418 | /** |
---|
| 419 | * splits an item set into premise and consequence and constructs therefore |
---|
| 420 | * an association rule. The length of the premise is given. The attributes |
---|
| 421 | * for premise and consequence are chosen randomly. The result is a RuleItem. |
---|
| 422 | * @param premiseLength the length of the premise |
---|
| 423 | * @param itemArray a (randomly generated) item set |
---|
| 424 | * @return a randomly generated association rule stored in a RuleItem |
---|
| 425 | */ |
---|
| 426 | public final RuleItem splitItemSet (int premiseLength, int[] itemArray){ |
---|
| 427 | |
---|
| 428 | int[] cons = new int[m_instances.numAttributes()]; |
---|
| 429 | System.arraycopy(itemArray, 0, cons, 0, itemArray.length); |
---|
| 430 | int help = premiseLength; |
---|
| 431 | while(help > 0){ |
---|
| 432 | int mark = m_randNum.nextInt(itemArray.length); |
---|
| 433 | if(cons[mark] != -1){ |
---|
| 434 | help--; |
---|
| 435 | cons[mark] =-1; |
---|
| 436 | } |
---|
| 437 | } |
---|
| 438 | if(premiseLength == 0) |
---|
| 439 | for(int i =0; i < itemArray.length;i++) |
---|
| 440 | itemArray[i] = -1; |
---|
| 441 | else |
---|
| 442 | for(int i =0; i < itemArray.length;i++) |
---|
| 443 | if(cons[i] != -1) |
---|
| 444 | itemArray[i] = -1; |
---|
| 445 | ItemSet premise = new ItemSet(itemArray); |
---|
| 446 | ItemSet consequence = new ItemSet(cons); |
---|
| 447 | RuleItem current = new RuleItem(); |
---|
| 448 | current.m_premise = premise; |
---|
| 449 | current.m_consequence = consequence; |
---|
| 450 | return current; |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | /** |
---|
| 454 | * generates a class association rule out of a given premise. |
---|
| 455 | * It randomly chooses a class label as consequence. |
---|
| 456 | * @param itemArray the (randomly constructed) premise of the class association rule |
---|
| 457 | * @return a class association rule stored in a RuleItem |
---|
| 458 | */ |
---|
| 459 | public final RuleItem addCons (int[] itemArray){ |
---|
| 460 | |
---|
| 461 | ItemSet premise = new ItemSet(itemArray); |
---|
| 462 | int[] cons = new int[itemArray.length]; |
---|
| 463 | for(int i =0;i < itemArray.length;i++) |
---|
| 464 | cons[i] = -1; |
---|
| 465 | cons[m_instances.classIndex()] = m_randNum.nextInt((m_instances.attribute(m_instances.classIndex())).numValues()); |
---|
| 466 | ItemSet consequence = new ItemSet(cons); |
---|
| 467 | RuleItem current = new RuleItem(); |
---|
| 468 | current.m_premise = premise; |
---|
| 469 | current.m_consequence = consequence; |
---|
| 470 | return current; |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /** |
---|
| 474 | * updates the support count of an item set |
---|
| 475 | * @param itemSet the item set |
---|
| 476 | */ |
---|
| 477 | public final void updateCounters(ItemSet itemSet){ |
---|
| 478 | |
---|
| 479 | for (int i = 0; i < m_instances.numInstances(); i++) |
---|
| 480 | itemSet.upDateCounter(m_instances.instance(i)); |
---|
| 481 | } |
---|
| 482 | |
---|
| 483 | /** |
---|
| 484 | * Returns the revision string. |
---|
| 485 | * |
---|
| 486 | * @return the revision |
---|
| 487 | */ |
---|
| 488 | public String getRevision() { |
---|
| 489 | return RevisionUtils.extract("$Revision: 1.7 $"); |
---|
| 490 | } |
---|
| 491 | } |
---|