[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * LabeledItemSet.java |
---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.associations; |
---|
| 24 | |
---|
| 25 | import weka.core.FastVector; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.RevisionHandler; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | |
---|
| 31 | import java.io.Serializable; |
---|
| 32 | import java.util.Enumeration; |
---|
| 33 | import java.util.Hashtable; |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | * Class for storing a set of items together with a class label. Item sets are stored in a lexicographic |
---|
| 38 | * order, which is determined by the header information of the set of instances |
---|
| 39 | * used for generating the set of items. All methods in this class assume that |
---|
| 40 | * item sets are stored in lexicographic order. |
---|
| 41 | * The class provides the methods used for item sets in class association rule mining. |
---|
| 42 | * Because every item set knows its class label the training set can be splitted up virtually. |
---|
| 43 | * |
---|
| 44 | * @author Stefan Mutter (mutter@cs.waikato.ac.nz) |
---|
| 45 | * @version $Revision: 1.5 $ |
---|
| 46 | */ |
---|
| 47 | |
---|
| 48 | public class LabeledItemSet |
---|
| 49 | extends ItemSet |
---|
| 50 | implements Serializable, RevisionHandler { |
---|
| 51 | |
---|
| 52 | /** for serialization */ |
---|
| 53 | private static final long serialVersionUID = 4158771925518299903L; |
---|
| 54 | |
---|
| 55 | /** The class label. */ |
---|
| 56 | protected int m_classLabel; |
---|
| 57 | |
---|
| 58 | /** The support of the rule. */ |
---|
| 59 | protected int m_ruleSupCounter; |
---|
| 60 | |
---|
| 61 | /** |
---|
| 62 | * Constructor |
---|
| 63 | * |
---|
| 64 | * @param totalTrans the total number of transactions |
---|
| 65 | * @param classLabel the class lebel |
---|
| 66 | */ |
---|
| 67 | public LabeledItemSet(int totalTrans, int classLabel){ |
---|
| 68 | |
---|
| 69 | super(totalTrans); |
---|
| 70 | m_classLabel = classLabel; |
---|
| 71 | } |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | /** |
---|
| 76 | * Deletes all item sets that don't have minimum support and have more than maximum support |
---|
| 77 | * @return the reduced set of item sets |
---|
| 78 | * @param maxSupport the maximum support |
---|
| 79 | * @param itemSets the set of item sets to be pruned |
---|
| 80 | * @param minSupport the minimum number of transactions to be covered |
---|
| 81 | */ |
---|
| 82 | public static FastVector deleteItemSets(FastVector itemSets, |
---|
| 83 | int minSupport, |
---|
| 84 | int maxSupport) { |
---|
| 85 | |
---|
| 86 | FastVector newVector = new FastVector(itemSets.size()); |
---|
| 87 | |
---|
| 88 | for (int i = 0; i < itemSets.size(); i++) { |
---|
| 89 | LabeledItemSet current = (LabeledItemSet)itemSets.elementAt(i); |
---|
| 90 | if ((current.m_ruleSupCounter >= minSupport) |
---|
| 91 | && (current.m_ruleSupCounter <= maxSupport)) |
---|
| 92 | newVector.addElement(current); |
---|
| 93 | } |
---|
| 94 | return newVector; |
---|
| 95 | } |
---|
| 96 | |
---|
| 97 | /** |
---|
| 98 | * Tests if two item sets are equal. |
---|
| 99 | * |
---|
| 100 | * @param itemSet another item set |
---|
| 101 | * @return true if this item set contains the same items as the given one |
---|
| 102 | */ |
---|
| 103 | public final boolean equals(Object itemSet) { |
---|
| 104 | |
---|
| 105 | if (!(this.equalCondset(itemSet))) |
---|
| 106 | return false; |
---|
| 107 | if(m_classLabel != ((LabeledItemSet)itemSet).m_classLabel) |
---|
| 108 | return false; |
---|
| 109 | |
---|
| 110 | return true; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | /** |
---|
| 114 | * Compares two item sets |
---|
| 115 | * @param itemSet an item set |
---|
| 116 | * @return true if the the item sets are equal, false otherwise |
---|
| 117 | */ |
---|
| 118 | public final boolean equalCondset(Object itemSet) { |
---|
| 119 | |
---|
| 120 | if ((itemSet == null) || !(itemSet.getClass().equals(this.getClass()))) { |
---|
| 121 | return false; |
---|
| 122 | } |
---|
| 123 | if (m_items.length != ((ItemSet)itemSet).items().length) |
---|
| 124 | return false; |
---|
| 125 | for (int i = 0; i < m_items.length; i++) |
---|
| 126 | if (m_items[i] != ((ItemSet)itemSet).itemAt(i)) |
---|
| 127 | return false; |
---|
| 128 | return true; |
---|
| 129 | } |
---|
| 130 | |
---|
| 131 | /** |
---|
| 132 | * Return a hashtable filled with the given item sets. |
---|
| 133 | * |
---|
| 134 | * @param itemSets the set of item sets to be used for filling the hash table |
---|
| 135 | * @param initialSize the initial size of the hashtable |
---|
| 136 | * @return the generated hashtable |
---|
| 137 | */ |
---|
| 138 | public static Hashtable getHashtable(FastVector itemSets, int initialSize) { |
---|
| 139 | |
---|
| 140 | Hashtable hashtable = new Hashtable(initialSize); |
---|
| 141 | for (int i = 0; i < itemSets.size(); i++) { |
---|
| 142 | LabeledItemSet current = (LabeledItemSet)itemSets.elementAt(i); |
---|
| 143 | hashtable.put(current, new Integer(current.m_classLabel)); |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | return hashtable; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Merges all item sets in the set of (k-1)-item sets |
---|
| 153 | * to create the (k)-item sets and updates the counters. |
---|
| 154 | * @return the generated (k)-item sets |
---|
| 155 | * @param totalTrans the total number of transactions |
---|
| 156 | * @param itemSets the set of (k-1)-item sets |
---|
| 157 | * @param size the value of (k-1) |
---|
| 158 | */ |
---|
| 159 | public static FastVector mergeAllItemSets(FastVector itemSets, int size, |
---|
| 160 | int totalTrans) { |
---|
| 161 | |
---|
| 162 | FastVector newVector = new FastVector(); |
---|
| 163 | LabeledItemSet result; |
---|
| 164 | int numFound, k; |
---|
| 165 | |
---|
| 166 | for (int i = 0; i < itemSets.size(); i++) { |
---|
| 167 | LabeledItemSet first = (LabeledItemSet)itemSets.elementAt(i); |
---|
| 168 | out: |
---|
| 169 | for (int j = i+1; j < itemSets.size(); j++) { |
---|
| 170 | LabeledItemSet second = (LabeledItemSet)itemSets.elementAt(j); |
---|
| 171 | while(first.m_classLabel != second.m_classLabel){ |
---|
| 172 | j++; |
---|
| 173 | if(j == itemSets.size()) |
---|
| 174 | break out; |
---|
| 175 | second = (LabeledItemSet)itemSets.elementAt(j); |
---|
| 176 | } |
---|
| 177 | result = new LabeledItemSet(totalTrans,first.m_classLabel); |
---|
| 178 | result.m_items = new int[first.m_items.length]; |
---|
| 179 | |
---|
| 180 | // Find and copy common prefix of size 'size' |
---|
| 181 | numFound = 0; |
---|
| 182 | k = 0; |
---|
| 183 | while (numFound < size) { |
---|
| 184 | if (first.m_items[k] == second.m_items[k]) { |
---|
| 185 | if (first.m_items[k] != -1) |
---|
| 186 | numFound++; |
---|
| 187 | result.m_items[k] = first.m_items[k]; |
---|
| 188 | } else |
---|
| 189 | break out; |
---|
| 190 | k++; |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | // Check difference |
---|
| 194 | while (k < first.m_items.length) { |
---|
| 195 | if ((first.m_items[k] != -1) && (second.m_items[k] != -1)) |
---|
| 196 | break; |
---|
| 197 | else { |
---|
| 198 | if (first.m_items[k] != -1) |
---|
| 199 | result.m_items[k] = first.m_items[k]; |
---|
| 200 | else |
---|
| 201 | result.m_items[k] = second.m_items[k]; |
---|
| 202 | } |
---|
| 203 | k++; |
---|
| 204 | } |
---|
| 205 | if (k == first.m_items.length) { |
---|
| 206 | result.m_ruleSupCounter = 0; |
---|
| 207 | result.m_counter = 0; |
---|
| 208 | newVector.addElement(result); |
---|
| 209 | } |
---|
| 210 | } |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | return newVector; |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | /** |
---|
| 217 | * Splits the class attribute away. Depending on the invert flag, the instances without class attribute or only the class attribute of all instances is returned |
---|
| 218 | * @param instances the instances |
---|
| 219 | * @param invert flag; if true only the class attribute remains, otherweise the class attribute is the only attribute that is deleted. |
---|
| 220 | * @throws Exception exception if instances cannot be splitted |
---|
| 221 | * @return Instances without the class attribute or instances with only the class attribute |
---|
| 222 | */ |
---|
| 223 | public static Instances divide(Instances instances, boolean invert) throws Exception{ |
---|
| 224 | |
---|
| 225 | Instances newInstances = new Instances(instances); |
---|
| 226 | if(instances.classIndex() < 0) |
---|
| 227 | throw new Exception("For class association rule mining a class attribute has to be specified."); |
---|
| 228 | if(invert){ |
---|
| 229 | for(int i=0;i<newInstances.numAttributes();i++){ |
---|
| 230 | if(i!=newInstances.classIndex()){ |
---|
| 231 | newInstances.deleteAttributeAt(i); |
---|
| 232 | i--; |
---|
| 233 | } |
---|
| 234 | } |
---|
| 235 | return newInstances; |
---|
| 236 | } |
---|
| 237 | else{ |
---|
| 238 | newInstances.setClassIndex(-1); |
---|
| 239 | newInstances.deleteAttributeAt(instances.classIndex()); |
---|
| 240 | return newInstances; |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | * Converts the header info of the given set of instances into a set |
---|
| 248 | * of item sets (singletons). The ordering of values in the header file |
---|
| 249 | * determines the lexicographic order. Each item set knows its class label. |
---|
| 250 | * @return a set of item sets, each containing a single item |
---|
| 251 | * @param instancesNoClass instances without the class attribute |
---|
| 252 | * @param classes the values of the class attribute sorted according to instances |
---|
| 253 | * @exception Exception if singletons can't be generated successfully |
---|
| 254 | */ |
---|
| 255 | public static FastVector singletons(Instances instancesNoClass, Instances classes) throws Exception { |
---|
| 256 | |
---|
| 257 | FastVector cSet, setOfItemSets = new FastVector(); |
---|
| 258 | LabeledItemSet current; |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | //make singletons |
---|
| 262 | for (int i = 0; i < instancesNoClass.numAttributes(); i++) { |
---|
| 263 | if (instancesNoClass.attribute(i).isNumeric()) |
---|
| 264 | throw new Exception("Can't handle numeric attributes!"); |
---|
| 265 | for (int j = 0; j < instancesNoClass.attribute(i).numValues(); j++){ |
---|
| 266 | for(int k =0; k < (classes.attribute(0)).numValues(); k++){ |
---|
| 267 | current = new LabeledItemSet(instancesNoClass.numInstances(),k); |
---|
| 268 | current.m_items = new int[instancesNoClass.numAttributes()]; |
---|
| 269 | for (int l = 0; l < instancesNoClass.numAttributes(); l++) |
---|
| 270 | current.m_items[l] = -1; |
---|
| 271 | current.m_items[i] = j; |
---|
| 272 | setOfItemSets.addElement(current); |
---|
| 273 | } |
---|
| 274 | } |
---|
| 275 | } |
---|
| 276 | return setOfItemSets; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | /** |
---|
| 283 | * Prunes a set of (k)-item sets using the given (k-1)-item sets. |
---|
| 284 | * |
---|
| 285 | * @param toPrune the set of (k)-item sets to be pruned |
---|
| 286 | * @param kMinusOne the (k-1)-item sets to be used for pruning |
---|
| 287 | * @return the pruned set of item sets |
---|
| 288 | */ |
---|
| 289 | public static FastVector pruneItemSets(FastVector toPrune, Hashtable kMinusOne){ |
---|
| 290 | |
---|
| 291 | FastVector newVector = new FastVector(toPrune.size()); |
---|
| 292 | int help, j; |
---|
| 293 | |
---|
| 294 | |
---|
| 295 | for (int i = 0; i < toPrune.size(); i++) { |
---|
| 296 | LabeledItemSet current = (LabeledItemSet)toPrune.elementAt(i); |
---|
| 297 | |
---|
| 298 | for (j = 0; j < current.m_items.length; j++){ |
---|
| 299 | if (current.m_items[j] != -1) { |
---|
| 300 | help = current.m_items[j]; |
---|
| 301 | current.m_items[j] = -1; |
---|
| 302 | if(kMinusOne.get(current) != null && (current.m_classLabel == (((Integer)kMinusOne.get(current)).intValue()))) |
---|
| 303 | current.m_items[j] = help; |
---|
| 304 | else{ |
---|
| 305 | current.m_items[j] = help; |
---|
| 306 | break; |
---|
| 307 | } |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | if (j == current.m_items.length) |
---|
| 311 | newVector.addElement(current); |
---|
| 312 | } |
---|
| 313 | return newVector; |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * Outputs the support for an item set. |
---|
| 319 | * |
---|
| 320 | * @return the support |
---|
| 321 | */ |
---|
| 322 | public final int support() { |
---|
| 323 | |
---|
| 324 | return m_ruleSupCounter; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * Updates counter of item set with respect to given transaction. |
---|
| 331 | * @param instanceNoClass instances without the class attribute |
---|
| 332 | * @param instanceClass the values of the class attribute sorted according to instances |
---|
| 333 | */ |
---|
| 334 | public final void upDateCounter(Instance instanceNoClass, Instance instanceClass) { |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | if (containedBy(instanceNoClass)){ |
---|
| 338 | m_counter++; |
---|
| 339 | if(this.m_classLabel == instanceClass.value(0)) |
---|
| 340 | m_ruleSupCounter++; |
---|
| 341 | } |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | /** |
---|
| 345 | * Updates counter of a specific item set |
---|
| 346 | * @param itemSets an item sets |
---|
| 347 | * @param instancesNoClass instances without the class attribute |
---|
| 348 | * @param instancesClass the values of the class attribute sorted according to instances |
---|
| 349 | */ |
---|
| 350 | public static void upDateCounters(FastVector itemSets, Instances instancesNoClass, Instances instancesClass){ |
---|
| 351 | |
---|
| 352 | for (int i = 0; i < instancesNoClass.numInstances(); i++) { |
---|
| 353 | Enumeration enu = itemSets.elements(); |
---|
| 354 | while (enu.hasMoreElements()) |
---|
| 355 | ((LabeledItemSet)enu.nextElement()).upDateCounter(instancesNoClass.instance(i),instancesClass.instance(i)); |
---|
| 356 | } |
---|
| 357 | |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | /** |
---|
| 361 | * Generates rules out of item sets |
---|
| 362 | * @param minConfidence the minimum confidence |
---|
| 363 | * @param noPrune flag indicating whether the rules are pruned accoridng to the minimum confidence value |
---|
| 364 | * @return a set of rules |
---|
| 365 | */ |
---|
| 366 | public final FastVector[] generateRules(double minConfidence, boolean noPrune) { |
---|
| 367 | |
---|
| 368 | FastVector premises = new FastVector(),consequences = new FastVector(), |
---|
| 369 | conf = new FastVector(); |
---|
| 370 | FastVector[] rules = new FastVector[3]; |
---|
| 371 | ItemSet premise, consequence; |
---|
| 372 | |
---|
| 373 | // Generate all rules with class in the consequence. |
---|
| 374 | premise = new ItemSet(m_totalTransactions); |
---|
| 375 | consequence = new ItemSet(m_totalTransactions); |
---|
| 376 | int[] premiseItems = new int[m_items.length]; |
---|
| 377 | int[] consequenceItems = new int[1]; |
---|
| 378 | System.arraycopy(m_items, 0, premiseItems, 0, m_items.length); |
---|
| 379 | consequence.setItem(consequenceItems); |
---|
| 380 | premise.setItem(premiseItems); |
---|
| 381 | consequence.setItemAt(m_classLabel,0); |
---|
| 382 | consequence.setCounter(this.m_ruleSupCounter); |
---|
| 383 | premise.setCounter(this.m_counter); |
---|
| 384 | premises.addElement(premise); |
---|
| 385 | consequences.addElement(consequence); |
---|
| 386 | conf.addElement(new Double((double)this.m_ruleSupCounter/(double)this.m_counter)); |
---|
| 387 | |
---|
| 388 | rules[0] = premises; |
---|
| 389 | rules[1] = consequences; |
---|
| 390 | rules[2] = conf; |
---|
| 391 | if(!noPrune) |
---|
| 392 | pruneRules(rules, minConfidence); |
---|
| 393 | |
---|
| 394 | |
---|
| 395 | return rules; |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | /** |
---|
| 399 | * Returns the revision string. |
---|
| 400 | * |
---|
| 401 | * @return the revision |
---|
| 402 | */ |
---|
| 403 | public String getRevision() { |
---|
| 404 | return RevisionUtils.extract("$Revision: 1.5 $"); |
---|
| 405 | } |
---|
| 406 | } |
---|